DR. G. PEDALL INGENIEURBÜRO GMBH. Untere Dorfstraße 7. D-95473 Haag

Beratende Ingenieure Bayerische Ingenieur-Kammer Bau Nr. 12104

Sachverständige und Untersuchungsstelle gem. §18 BBodSchG und VSU

Fachkräfte für Arbeitssicherheit

- Altlasten, Flächenrecycling
- Industrierüçkbau
- Baugrund
- Deponietechnik
- Lagerstättenentwicklung

Haag/Bayreuth, 27.04.2021

Altenstadt a.d. Waldnaab Errichtung einer Lärmschutzwand östlich der B22 Geotechnischer Bericht

20-0409-3 Auftragsnummer: Auftragsdatum: 28.04.2020

Verteiler: Auftraggeber (3-fach)

Dr. G. Pedall Ingenieurbüro GmbH (1-fach)

Anzahl der Gutachtenexemplare: 4 15 Seiten: Anlagen:

Auftraggeber:

Gemeinde Altenstadt a.d. Waldnaab Hauptstraße 6 92655 Altenstadt a.d. Waldnaab

Gerald Lang

Tel: 09602/6331-21 Fax: 09602/6331-44

E-Mail: glang@altenstadt-waldnaab.de

Bearbeiter:

Dr. G. Pedall Ing.-Büro GmbH Untere Dorfstraße 7 95473 Haag

Tobias Sluka, Simon Pedall

Tel.: 09201/997-0 Fax: 09201/997-44 E-Mail: info@ibpedall.de

Postbank Nürnberg

DR. G. PEDALL INGENIEURBÜRO GMBH

Inhaltsv	<u>erzeichnis</u>	Seite
1.	Veranlassung und Aufgabenstellung	4
2.	Angaben zum Untersuchungsareal	4
2.1	Lage und Bestandssituation	4
2.2	Geologie und Hydrogeologie	5
3.	Geländearbeiten	6
4.	Bautechnische Bewertung des Untergrunds	7
4.1	Schichtenfolge	7
4.2	Lagerungsdichten und Konsistenzen	7
4.3	Grundwasser	8
4.4	Boden- und Substanzverunreinigungen	8
4.5	Homogenbereiche	9
4.6	Bodenkennwerte	11
5.	Gründungstechnische Empfehlungen	11
5.1	Allgemein	
5.2	Gründungsvarianten	
5.3	Verbau, Wasserhaltung, Bauwerkshinterfüllung	
6.	Zusätzliche Bemerkungen	15

<u>Anlagenverzeichnis</u>

Anlage 1.1:	Topographischer Übersichtslageplan, M 1:25.000
Anlage 1.2:	Geologische Karte, M 1:20.000
Anlage 2:	Detaillageplan mit Eintragung der Aufschlusspunkte, M 1:1.250
Anlage 3:	Bohrprofile der Kernbohrungen und Rammsondierungen, M 1:60
Anlage 4:	Tabellarische Zusammenstellung der chemischen Analytik
Anlage 5:	Prüfprotokolle der chemischen Untersuchungen
Anlage 6:	Prüfprotokoll der bodenmechanischen Untersuchungen
Anlage 7:	Fotodokumentation Kernbohrungen
_	

DR. G. PEDALL INGENIEURBÜRO GMBH

Unterlagen- und Literaturverzeichnis

- **Unterlage 1:** Auftrag (schriftlich) vom 28.04.2020 zur Durchführung von Baugrunderkundungen im Bereich des Baugebiets "Sauernlohe"
- **Unterlage 2:** Geologische Karte des KTB-Umfeldes Oberpfalz, 1:50.000, Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB), Niedersächsiches Landesamt für Bodenforschung und Bayerisches Geologisches Landesamt, München, 1992
- **Unterlage 3:** Bayernatlas Plus vom Bayerischen Staatsministerium der Finanzen und für Heimat (https://geoportal.bayern.de/bayernatlas/)
- **Unterlage 4:** Karte der Frosteinwirkungszonen (https://www.bast.de), Bundesanstalt für Straßenwesen.
- **Unterlage 5:** Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen (RStO 11) FGSV-Verlag GmbH Köln, Ausgabe 2011
- **Unterlage 6:** Bebauungsplan "Sauernlohe", Plan-Nr. 19, Variante B, M 1:1.000, RSP Architektur und Stadtplanung GmbH, 14.10.2019
- **Unterlage 7:** Mitteilung der Länderarbeitsgemeinschaft Abfall (LAGA) 20 "Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen Technische Regeln", Erich Schmidt Verlag, Stand 06.11.1997
- **Unterlage 8:** Verordnung über Deponien und Langzeitlager (Deponieverordnung DepV), Bundesministeriums der Justiz und für Verbraucherschutz, Stand: 30.06.2020
- **Unterlage 9:** Smoltcyk, Ulrich (Hrsg): Grundbautaschenbuch Teil 1 bis 3: 7. Auflage. Berlin, Verlag Ernst & Sohn 2008
- Unterlage 10: Norm DIN 1054: Januar 2005. Baugrund Sicherheitsnachweise im Erd- und Grundbau
- Unterlage 11: Norm DIN EN ISO 22476-2:2012-3: Geotechnische Erkundung und Untersuchung Felduntersuchungen Teil 2: Rammsondierungen

Informationspflicht gemäß Artikel 13 Datenschutzgrundverordnung

Ab dem 25,05,2018 gilt die EU-Datenschutzgrundverordnung (DS-GVO), Durch sie soll der Schutz natürlicher Personen bei der Verarbeitung personenbezogener Daten verbessert werden.

Da wir zur Erfüllung Ihrer Aufträge und der gesetzlichen Pflichten im Rahmen unserer Tätigkeit personenbezogener Daten von Ihnen erheben und verarbeiten, sind wir verpflichtet, Ihnen bestimmte Informationen über die Verarbeitung mitzuteilen und auf Ihre Rechte hinzuweisen. Dies soll Ihnen eine bessere Kontrolle dieser Daten ermöglichen. Die Informationen finden Sie auf unserer Homepage www.ibpedall.de

Sollten Sie weitere Informationen wünschen, senden Sie uns bitte eine Mail auf <u>datenschutz@ibpedall.de</u> oder rufen Sie uns an: 092019970.

- Eine auszugsweise Vervielfältigung des Gutachtens ist ohne unsere Zustimmung nicht zulässig.
- Proben werden, soweit nicht anders vereinbart, vier Wochen nach Fertigstellung des Gutachtens entsorgt.

1. Veranlassung und Aufgabenstellung

Die Gemeinde Altenstadt a.d. Waldnaab plant, im Zuge der Erschließung des Baugebiets Sauernlohe an der Bundesstraße B22 eine Lärmschutzwand zu errichten.

Am 28.04.2020 wurde die Dr. G. Pedall Ingenieurbüro GmbH schriftlich von der Gemeinde Altenstadt a.d. Waldnaab, vertreten durch den 1. Bürgermeister Herrn Ernst Schicketanz, mit der Erkundung des Untergrundes und Erstellung eines Baugrundgutachtens beauftragt [U1].

Zu beurteilen war der Baugrund in bautechnischer Hinsicht (Homogenbereiche, Verbau, Wiedereinbaufähigkeit des Materials, Frostsicherheit, Grundwasser, etc.). Des Weiteren sollten Aussagen über mögliche Schadstoffbelastungen getroffen werden.

Im vorliegenden Bericht werden die Ergebnisse der geotechnischen Erkundungen für die Lärmschutzwand an der B22 zusammengestellt und bewertet.

2. Angaben zum Untersuchungsareal

2.1 Lage und Bestandssituation

Das ca. 17 ha große Untersuchungsgebiet liegt westlich der B22 im Gemeindegebiet von Altenstadt a.d. Waldnaab im Landkreis Neustadt a.d. Waldnaab. Nächstgrößere Städte sind Weiden (4 km südlich) und Neustadt a.d. Waldnaab (3 km nordöstlich).

Abb. 1: Luftbild des Untersuchungsgebiets (rot) [U 3]

Das Untersuchungsgebiet befindet sich in der Frosteinwirkungszone III gemäß RStO [U 4, U 5] (vgl. Abb. 2).

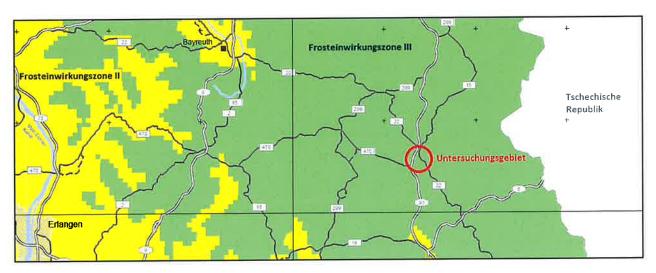


Abb. 2: Auszug aus der Karte der Frosteinwirkungszonen gemäß RStO; modifiziert, Lage des Untersuchungsgebiets ist rot markiert

Die Untersuchungsfläche befindet sich östlich der B22 im Bereich eines Grünstreifens zwischen Bundesstraße und Rad- und Fußweg. Der Untersuchungsbereich liegt auf einer Geländehöhe zwischen ca. 415 m NN und 418 m NN.

2.2 Geologie und Hydrogeologie

Dem geologischen Kartenblatt [vgl. Anl. 1.2, U 2] zufolge stehen im Untersuchungsgebiet überwiegend oberpleistozäne Flussschotter der Niederterrasse als Kiese und Sande an (vgl. Abb. 3). Im Bereich der östlich fließenden Dürrschweinnaab sind holozäne Flussablagerungen als Sande und Kiese, z.T. unter Flusslehm bzw. Flussmergel anzutreffen.

Abb. 3: Auszug aus der digitalen geologischen Karte 1:25.000 von Bayern, Blatt 6438 Parkstein [U 3] mit Untersuchungsgebiet (rot)

Südwestlich des Untersuchungsgebiets befindet sich in ca. 1 km Entfernung das Trinkwasserschutzgebiet "WV Weiden, Brunnen 14 - 25 (VO von 1983)" (Gebietskennziffer 2210623800060). Das Untersuchungsgebiet liegt außerhalb von festgesetzten Überschwemmungsgebieten und wassersensiblen Bereichen [U 3].

Geländearbeiten 3.

Zwischen dem 02.12.2020 und dem 07.12.2020 wurden fünf Kernbohrungen bis 10,0 m uGOK angelegt. Zur korrelativen Ableitung von Lagerungsdichten und Konsistenzen wurden ergänzend vier schwere Rammsondierungen bis max. 9,5 m uGOK niedergebracht.

Alle Aufschlusspunkte wurden nach Lage und Höhe vermessen. Die genaue Lage kann Anlage 2 entnommen werden. Eine Zusammenstellung der Geländearbeiten findet sich in der Tabelle 1.

Die Aufschlüsse dienten der Schichtaufnahme und teufendifferenzierten Probenahme von Boden für chemische und labormechanische Untersuchungen. Eine Auflistung der durchgeführten Arbeiten ist der nachfolgenden Tabelle 1 zu entnehmen.

Tab. 1: Durchgeführte Geländearbeiten und Untersuchungen

A. 6 - 1.1"	geotechnis	che Aufschlu	ıssarbeiten	Laborunter	suchungen
Aufschlüsse [Lage s. Anl. 2]	KB [m uGOK]	DPH [m uGOK]	Proben- anzahl	komb. Sieb-Schlämm- Analyse	LAGA 11/1997 + DepV
KB 1	10,0	:=0	5	1	1
KB 2 + DPH 2	10,0	5,5	3	1	1
KB 3 + DPH 3	10,0	5,5	3	1	1
KB 4 + DPH 4	10,0	9,5	3	1	1
KB 5 + DPH 5	10,0	6,6	3	2	1
GESAMT	50,0 m	27,1 m	17	6	5

^{*} Abbruch aufgrund mangelnden Sondierfortschritts

Abkürzungen: KB = Kembohrung, DPH = schwere Rammsondierung

Fünf entnommene Bodenproben aus dem anstehenden Boden wurden auf den Parameterumfang der LAGA 11/1997 sowie der Ergänzungsparameter auf den Umfang der DepV DK 0 analysiert.

Die chemische Analytik wurde von akkreditierten chemischen Labor Eurofins Umwelt Ost, Standort Freiberg durchgeführt.

An sechs Proben wurde die Korngrößenverteilung gemäß DIN EN ISO 17892-4 als Sieb-Schlämm-Analyse ermittelt.

Bautechnische Bewertung des Untergrunds 4.

Nachfolgend sind die Verhältnisse im Baufeld beschrieben. Dargestellt werden Zusammensetzung sowie Ergebnisse der chemischen Analysen des Materials im Untergrund des Untersuchungsgebiets.

4.1 **Schichtenfolge**

Der Schichtenbau im geplanten Baubereich ist homogen aufgebaut und kann grob in drei Schichten untergliedert werden, die unter einem 0,3 m bis 0,6 m starken humosen Oberboden vorgefunden wurden.

Schicht 1

Die oberste Schicht sind überwiegend sandige pleistozäne Flussablagerungen. Sie stehen als schluffig-kiesige Sande (Bodengruppe SU) bzw. stark schluffige-kiesige Sande (Bodengruppe SU*) an und sind beige, rotbraun, braun, grau oder ocker gefärbt. Schicht 1 reicht bis max. 7,8 m uGOK (KB 5).

Schicht 2

In allen Aufschlüssen außer KB 5 wurden als zweite Schicht überwiegend kiesige pleistozäne Flussablagerung aufgeschlossen. Sie stehen als sandig-schluffige Kiese an und sind grau, braun, rotviolett, schwarz, dunkelbraun bzw. rotbraun gefärbt. Die Schichtuntergrenze liegt bei max. 9,0 m (KB 3).

Schicht 3

Die unterste Schicht im Untersuchungsbereich sind teilweise zu Sandstein verfestigte pleistozäne Flussablagerungen. In KB 2 bis 4 ist der Sandstein entfestigt. Er liegt als schluffig-kiesiger Sand vor. In KB 1 und 5 wurde grobsandiger Fein- bis Mittelsandstein angetroffen.

Lagerungsdichten und Konsistenzen 4.2

Aus den Sondierungen mit der schweren Rammsonde (DPH) ergeben sich in Abhängigkeit der Schlagzahlen N₁₀ folgende Aussagen bezüglich der Lagerungsverhältnisse von nicht bindigen bzw. von Konsistenzen für bindige Böden als Grundlage für die Festlegung baugrundbezogener Parameter:

Interpretation der Schlagzahlen mit schwerer Rammsonde (DPH) [U 13] Tab. 2:

schwere Rammsonde DPH						
Schlagzahl N ₁₀	Lagerung	Schlagzahl N₁₀	Konsistenz			
0-2	sehr locker	< 2	breiig			
2-4	locker	2 – 5	weich			
4 – 11	mitteldicht	5 – 8	steif			
11 – 15	dicht	8 – 15	halbfest			
> 15	sehr dicht	> 15	fest			

DR. G. PEDALL INGENIEURBÜRO GMBH

Bis 1,3 m uGOK überwiegt in DPH 2 lockere Lagerung, darunter bis 3,0 m mitteldichte Lagerung.

Bis 5,0 m uGOK ist von einer dichten Lagerung auszugehen, zur erreichten Endteufe hin werden Schlagzahlen entsprechend einer sehr dichten Lagerung erzielt.

Auch in DPH 3 liegen im obersten Meter lockere bis sehr lockere Lagerungen vor. Die Schlagzahlen steigen danach leicht an. Aus ihnen lässt sich eine nahezu durchgängig mitteldichte Lagerung bis 2,9 m uGOK ableiten, darunter bis 4,9 m uGOK dichte Lagerung. Bis zur erzielten Endteufe von 5,5 m ist von sehr dichter Lagerung auszugehen.

Bis 0,6 m uGOK wurden verdichtete Bereiche in DPH 4 ausgemacht, die Schlagzahlen entsprechen einer weitestgehend dichten Lagerung. Darunter wurden bis ca. 1,8 m uGOK Werte für N_{10} zwischen 3 und 5 ermittelt, was einer überwiegend lockeren Lagerung entspricht.

Bis 2,7 m uGOK lässt sich eine mitteldichte Lagerung ableiten, bis 3,7 m uGOK ist von einer dichten Lagerung auszugehen. Bis 4,4 m uGOK liegen mitteldichte Lagerungen vor, ehe ein Wiederanstieg der Schlagzahlen entsprechend dichter Lagerung bis ca. 6,9 m uGOK erfolgt. Im Bereich des erbohrten Feinkieses bis Grobsands liegen aufgelockerte Bereiche vor. Die Schlagzahlen N_{10} liegen bei 3 bis 4 zwischen 7,4 m und 8,5 m uGOK.

Danach erfolgt ein tendenzieller Anstieg. Ab 9,0 m uGOK steigen die Schlagzahlen stark an und erreichen Werte für eine sehr dichte Lagerung.

Auch bei DPH 5 wurden im Bereich des oberen halben Meters verdichtete Bereiche ausgemacht. Darunter liegn die Schlagzahlen bis rund 1,9 m uGOK in Größenordnungen entsprechend lockerer Lagerung. Sie schwanken anschließend stark, erreichen jedoch stets Werte für eine mindestens mitteldichte Lagerung bis zur Endteufe.

Zwischen 3,1 m und 4,1 m liegt ein verfestigter Bereich vor, in dem dichte bis sehr dichte Lagerung überwiegt. Ab 5,7 m uGOK bis zur erzielten Endteufe von 6,6 m liegen die Schlagzahlen in einer Größenordnung sehr dichter Lagerung. Ab 6,6 m uGOK war kein Rammfortschritt mehr zu verzeichnen ($N_{10} > 100$).

4.3 Grundwasser

Grundwasser wurde in den Bohrlöchern nicht angetroffen.

4.4 Boden- und Substanzverunreinigungen

Anstehendes

Aus jedem Aufschluss wurde jeweils eine Probe der vorgefundenen anstehenden Böden auf den Parameterumfang der LAGA 11/1997 sowie der Ergänzungsparameter der DepV (DK 0) untersucht.

Es ergaben sich ausschließlich geogene Schwermetallgehalte sowie für die örtlichen Böden typische pH-Werte im sauren Milieu. In CaCl₂ liegen die pH-Werte zwischen 4,6 und 5,9, im Eluat zwischen 5,1 und 6,5.

Geogen erhöhte Gehalte traten für die Schwermetalle Blei (max. 496 mg/kg) und einmalig für Cadmium (2,1 mg/kg) auf. Relevante Löslichkeiten waren nicht zu beobachten.

Aus den Untersuchungsergebnissen resultieren folgende Einstufungen:

•	KB 1/4 (4,5-8,2):	LAGA Z 1.2 (Blei)	DepV DK 0
•	KB 2/1 (0,3-4,8):	LAGA Z 0	DepV DK 0
•	KB 3/2 (6,2-9,0):	LAGA Z 2 (Blei)	DepV DK 0
•	KB 4/1 (0,6-7,6):	LAGA Z 0	DepV DK 0
•	KB 5/3 (7,8-10,0):	LAGA Z 2 (Blei)	DepV DK 0

Die Bleigehalte nehmen tendenziell mit der Teufe zu, es handelt sich um Werte des geogenen Hintergrunds.

Prinzipiell ist der Verbleib des Materials an Ort und Stelle bei geotechnischer Eignung möglich, es traten ausschließlich geogene Gehalte auf (Verschlechterungsverbot). Das Anfallen von Überschussmassen ist zu vermeiden.

Beim Anfallen von Überschussmassen, kann in Abstimmung mit den zuständigen Genehmigungsbehörden gegebenenfalls auf eine weitere Analyse des anstehenden Bodens für die Entsorgung verzichtet werden. Dennoch wird empfohlen, anfallenden Aushub zu sortenreinen Haufwerken bis max. 500 m³ aufzuhalden und einer Haufwerksprobenahme nach der Probenahmerichtlinie LAGA PN 98 zu unterziehen. Aufgrund der Voruntersuchung kann eine Reduzierung des Untersuchungsumfangs auf zwei Laborproben für 500 m³ erfolgen.

4.5 Homogenbereiche

DIN 18300. Gewerk Erdarbeiten

Im Untersuchungsgebiet liegen weitestgehend homogene Baugrundverhältnisse vor. Chemische Analysen wurden bei der Einteilung in Homogenbereiche berücksichtigt. Zum besseren Verständnis sind die Bodenklassen (alt) mit angegeben. Gemäß DIN 18 300 ist das erkundete Bodenmaterial in drei Homogenbereiche einzuordnen.

Es wird davon ausgegangen, dass sich die Böden aller o.g. Homogenbereiche mit einem Tieflöffelbagger mit Reißzähnen, mittlerer Leistungsklasse (ca. 6 bis 30 t) lösen lassen.

Tab. 3: Beschreibung der Homogenbereiche E 1 bis E 3 für das Gewerk Erdarbeiten DIN 18 300

Eigenschaften	Homogenbereich E 1	Homogenbereich E 2	Homogenbereich E 3
Ortsübliche Bezeichnung	Sand	Kies	Sandstein
Bodengruppe	SU, SU*	GU	SU, SW
Körnung nach DIN EN ISO 14688-1	sigrSa	sisaGr, siSaGr	(si)grSa
Lagerungsdichte	locker bis mitteldicht gelagert	locker bis mitteldicht gelagert	dicht bis sehr dicht gelagert
Organischer Anteil in %	≤ 3	≤ 3	≤ 3
Frostempfindlichkeitsklasse	F 2 bis F 3	F 2	F 1 bis F 2
Wassergehalt in %	5 bis 15	≤ 10	≤ 10
Anteil an Steinen/Blöcken	< 10/< 5	< 25/< 5	< 30/< 15
Voreinstufung gemäß LAGA 11/1997 DepV	Z 0 DK 0	Z 1.2 bis Z 2 DK 0	Z 2 DK 0
Bodenklasse (alt)	3 bis 4 leicht bis mittel- schwer lösbarer Boden	3 leicht lösbarer Bo- den	5 bis 6 schwer lösbarer Boden bis leicht lösbarer Fels

DIN18301, Gewerk Bohrarbeiten

Für das Gewerk Bohrarbeiten lässt sich gemäß DIN 18301 der erkundete Boden in drei Homogenbereiche einteilen. Chemische Analysen wurden bei der Einteilung berücksichtigt.

Tab. 4: Beschreibung der Homogenbereiche für das Gewerk Bohrarbeiten nach DIN 18 301

Eigenschaften	Homogenbereich BA 1	Homogenbereich BA 2	Homogenbereich BA 3
Ortsübliche Bezeichnung	Sand	Kies	Sandstein
Bodengruppe DIN 18196	SU, SU* [BN1 bis BN2]	GU [BN1]	SU, SW [BN1]
Körnung nach DIN EN ISO 14688-	sigrSa	sisaGr, siSaGr	(si)grSa
Plastizitätszahl*	(a)	2	**
Konsistenzzahl*	ies.	•	-
Wassergehalt* in %	5 bis 15	≤ 10	≤ 10
Anteil an Steinen/Blöcken in %	< 10/< 5 [BS1]	< 25/< 5 [BS1]	< 30/< 15 [BS2]
Kohäsion [kN/m²]	0 bis 5	0	0
Feuchtdichte [t/m³]	1,90 bis 2,00	2,20 bis 2,30	2,20 bis 2,40
Durchlässigkeitsbeiwert* [m/s]	1 x 10 ⁻⁴ bis 1 x 10 ⁻⁷ (5,9 x 10 ⁻⁵ ; 5,1 x 10 ⁻⁵ ; 2,7 x 10 ⁻⁵ ; 2,1 x 10 ⁻⁵)	1 x 10 ⁻⁵ bis 1 x 10 ⁻⁷	$2 \times 10^{-4} \text{ bis } 1 \times 10^{-6}$ (1,0 x 10 ⁻⁴ ; 1,1 x 10 ⁻⁴)
Abrasivität	hoch	mäßig bis hoch	hoch
Voreinstufung gemäß LAGA 11/1997 DepV	Z 0 DK 0	Z 1.2 bis Z 2 DK 0	Z 2 DK 0

^{*} Werte aus Laborversuchen in Klammern (Berechnung Durchlässigkeitsbeiwert aus der Komgrößenverteilung) Eingruppierung in "neue Bodenklassen" gemäß DIN 18301 in eckigen Klammern

4.6 Bodenkennwerte

Nach Auswertung der Felderkundung (RKS und DPH), labormechanischen Untersuchungen (Kornverteilung, Konsistenz) sowie anhand von Erfahrungswerten aus Untersuchungen an vergleichbaren Böden können u.a. für erdstatische Berechnungen die nachfolgenden Bodenkennwerte für ungestörte Proben abgeleitet werden:

Sandstein **Kies** Sand Bodenkenngrößen 22,0 bis 23,0 22.0 bis 24.0 Wichte g [kN/m³] 19,0 bis 20,0 12.0 bis 14.0 12.0 bis 13.0 10,0 bis 11,0 Wichte unter Auftrieb q' [kN/m³] 28 bis 32 37 bis 40 39 bis 42 Reibungswinkel f' [°] n Kohäsion c' [kN/m²] 0 bis 5 200 bis 300 Steifezahl Es [MN/m2] 150 bis 200 40 bis 80 SU-SW GU SU-SU* Bodengruppe DIN 18 196

Tab. 5: Bodenkennwerte nach DIN 18 196 und Rechenwerte nach DIN 1055 (T2)

5. Gründungstechnische Empfehlungen

5.1 Allgemein

Der erkundete Schichtenbau entlang der Lärmschutzwand ist als homogen anzusehen. Es herrschen somit einheitliche und vergleichbare Untergrundverhältnisse.

Unter Berücksichtigung der nachfolgenden Punkte sind die Böden bei **mindestens mitteldichter** Lagerungsdichte als tragfähig anzusehen:

- Erd-/Gründungsarbeiten sind prinzipiell bei frostfreier Witterung durchzuführen, da die erkundeten Bodenhorizonte teilweise der Frostempfindlichkeitsklasse F 3 (sehr frostempfindlich) zuzuordnen sind.
- Die Wassergehalte der vorgefundenen feinsandigen Böden sind zu Berücksichtigen. Nach Wasserzutritt oder durch Einwirkungen des Baubetriebes aufgeweichter oder vernässter Boden im Gründungsniveau ist gegen Magerbeton oder geeignete, vernässungsunempfindliche und verdichtungswillige Lockergesteinskörnung (Vorsieb, Frostschutz) auszutauschen. Aufgeweichtes Bodenmaterial ist von einer örtlichen Wiederverwendung auszuschließen.

5.2 Gründungsvarianten

Die Gründung der Lärmschutzwand hat aufgrund der Lage in der Frosteinwirkungszone III in einer frostsicheren Gründungstiefe von mindestens 1,2 m uGOK zu erfolgen.

Eine Flachgründung über Einzelfundamente ist prinzipiell möglich, allerdings muss aufgrund der ermittelten Schlagzahlen mit einer aufwändigen Nachverdichtung des anstehenden Sands bis in mehrere Meter Tiefe gerechnet werden.

Aus wirtschaftlichen Gründen und aufgrund der Baugrundverhältnisse mit ggf. geringen Tragfähigkeiten wird empfohlen, die Lärmschutzwand mittels Tiefgründung zu errichten. Als geeigneter Gründungshorizont wird der Sandstein ab ca. 9 m uGOK gesehen, dessen Mächtigkeit im Untersuchungsgebiet in der Regel bei mehreren Metern liegt.

Pfahlgründung

Die folgenden Voraussetzungen für das Einhalten der Kriterien nach DIN 1054, DIN 4014 sowie EA-Pfähle sollten vor Einbringen der Pfahlgründungen gewährleistet sein:

- Die Gründungspfähle werden im Wesentlichen in axialer Richtung belastet.
- Der Boden muss ausreichend tragfähig sein:

nicht bindige Böden:

mind. mitteldichte Lagerung → Lagerungsdichte D ≥ 0,40 (U ≤ 3) bzw. D ≥ 0,55 (U ≥ 3)

bindige Böden:

annähernd halbfeste Konsistenz

- Die Pfähle haben gleiches Verformungs- und Setzungsverhalten aufzuweisen.
- Die Mindestpfahllänge im Baugrund sollte mindestens 5,0 m oder den 5-fachen Pfahldurchmesser betragen, wobei der größere Wert maßgebend ist.
- Die Einbindetiefe in tragfähige Schichten beträgt ≥ 2,5 m, im Fels sollte die Einbindtiefe nicht weniger als 0,5 m betragen (nach Probebelastungen sind Abweichungen möglich).
- Die Mächtigkeit der tragfähigen Schicht unterhalb der Pfahlsohle muss drei Pfahldurchmesser, jedoch mindestens 1,5 m betragen.

Bei zulässiger Belastung der Bohrpfähle ist das äußere (Abhängigkeit zwischen Pfahlwiderstand und Pfahlkopfverschiebung) sowie innere (Pfahlbaustoff) Tragverhalten nachzuweisen:

- Für Bohrpfähle, die in Boden einbinden, dessen Kohäsion im undränierten Zustand cu ≤ 15 kN/m² (flüssige bis breiige Konsistenz) beträgt, ist ein Knicknachweis zu führen.
- Für Bohrpfähle muss mindestens ein Beton der Festigkeitsklasse C 20/25 bis C 30/37 nach DIN 1045 verwendet werden.
- In feinkörnigen Böden mit einer Kohäsion im undränierten Zustand c_u ≤ 15 kN/m² (Nachweis: Konsistenzzahl I_C < 0,25) ist Betonieren gegen den Boden nicht mehr zulässig. Der Frischbeton muss durch Hülsen gestützt werden.
- Bei Bohrpfählen, die mit Wasser und Boden in Berührung kommen, das nach DIN 4030 schwach bis stark betonangreifend ist [s. Kap. Grundwasser, Anl. 3], ist Beton mit hohem Widerstand gegen chemische Angriffe nach DIN 1045 zu verwenden.

Die zulässige Belastung ist, soweit nicht spezielle Erfahrungen von vergleichbaren Verhältnissen vorliegen, anhand von Probebelastungen festzulegen. Liegen keine Erfahrung in vergleichbaren Böden sowie Probebelastungen vor, können nachfolgende charakteristische Werte des Pfahlspitzenwiderstandes sowie Pfahlmantelreibung nach DIN 1054, DIN 4014 bzw. EA Pfähle der Tab. 10 und 11 zur Vorbemessung angewandt werden:

Erfahrungswerte für den charakteristischen Pfahlspitzenwiderstand q_{b,k} für Tab. 10: der Bohrpfähle in nichtbindigen Böden - Sand/Kies [EA Pfähle]

Bezogene Pfahlkopfset-		Pfahlspitzenwide	rstand q _{b,k} [kN/m²]	
zung s/D bzw. s/D _F	mittlerer Sondierspitzenwiderstand [MN/m²] bzw. N ₁₀			
[m]	10	15	20	25
0,02	0,70	1,05	1,40	1,75
0,03	0,90	1,35	1,80	2,25
0,10 (= s _g)	2,0	3,0	3,5	4,0

Spannen der Erfahrungswerte für den Bruchwert der Pfahlmantelreibung in Abhängigkeit des mittleren Tab. 11: Sondierspitzenwiderstands qs für Bohrpfähle in nichtbindigen Böden - Sand/Kies [EA Pfähle]

mittlerer Sondierspitzenwiderstand q _s [MN/m²]	Bruchwert der Pfahlmantelreibung t _{mf} [MN/m		
0	0		
5	0,04		
10	0,08		
≥ 15	0,12		

Unter Begrenzung der Horizontalverschiebung auf 2,0 cm oder 0,03 x D sowie Absetzen der Bohrpfähle in den pleistozänen Ablagerungen kann zur Vorbemessung der Bohrpfähle und vorbehaltlich erforderlicher Probebelastungen ein zulässiger Pfahlspitzenwiderstand von 1,80 bis 2,25 MN/m² (Sand und Kies) sowie Pfahlmantelreibung von 0,10 bis 0,12 MN/m² (Sand und Kies) angesetzt werden.

Aufgrund o.g. Hinweise bezüglich Mindestpfahllänge sowie Einbindetiefe und je nach abzutragender Last können die Pfähle als Aufstandspfähle im Sandstein gegründet und die Bauwerkslasten über den Pfahlspitzenwiderstand abgetragen werden.

Die zulässige Belastung ist, soweit nicht spezielle Erfahrungen von vergleichbaren Verhältnissen vorliegen, anhand von Probebelastungen festzulegen. Liegen keine Erfahrung in vergleichbaren Böden sowie Probebelastungen vor, können für den Bereich der Krafteinleitungslänge die charakteristischen Werte des Pfahlspitzenwiderstandes sowie der Pfahlmantelreibung nach DIN 1054, DIN 4014 bzw. EA Pfähle der nachfolgenden Tab. 12 zur Vorbemessung angewandt werden.

Charakteristische Erfahrungswerte für Pfahlspitzenwiderstände q_{b1,k} und Pfahlmantelreibung q_{s1,k} für Bohrpfähle in Sandstein [EA Pfähle]

Gesteinstyp	Festigkeit nach DIN 1054	Einaxiale Druckfestigkeit q _{u,k} in [MN/m²]	Pfahlspitzen- widerstandes q _{b1,k} in [kN/m²]	Pfahlmantel- reibung q _{s1,k} in [kN/m²]
F	hart bis sehr hart	> 100	8.000	700
Festgestein	hart	> 50	6.000	500
	mäßig hart	12,5 – 50	4.000	200 bis 400
l .	mäßig mürb	5 – 12,5		
Halbfestgestein	mürb	1,25 – 5	2.500	100 bis 200
	sehr mürb	< 1,25	1.600	80
	grusig / Boden	< 0,6	1.200	60
Lockergestein	bindig / Boden	< 0,6	800 bis 1.000	40

DR. G. PEDALL INGENIEURBÜRO GMBH

Zur Vorbemessung der Bohrpfähle und vorbehaltlich erforderlicher Probebelastungen kann ein zulässiger Pfahlspitzenwiderstand von 2,5 MN/m² sowie eine Pfahlmantelreibung von 0,1 bis 0,2 MN/m² angesetzt werden.

Die finale Festlegung der Gründungstiefe sollte bei Ausführung durch den Bohrgeräteführer vor Ort anhand des ermittelten Spitzendrucks erfolgen, da aufgelockerte Bereiche nicht auszuschließen sind.

Zur vollen Ausnutzung der Traglast des anstehenden Untergrunds wird empfohlen, die zulässige Bemessung über Probebelastungen zu ermitteln. Aufgrund deren Ergebnisse erfolgt dann die endgültige Festlegung von Absenktiefe, Anzahl und Geometrie der Bohrpfähle sowie der aufzunehmenden Lasten inkl. auftretender Setzungen durch das auszuführende Fachgewerk und ist dann von diesem zu gewährleisten.

Wenn Probepfähle als Bauwerkspfähle verwendet werden sollen, ist nachzuweisen, dass durch die Probebelastung ihr verändertes Verformungsverhalten für das Bauwerk unschädlich ist und sie unter der Prüflast keine Einbuße ihrer Tragfähigkeit erlitten haben.

5.3 Verbau, Wasserhaltung, Bauwerkshinterfüllung

Es wurde bei den Aufschlussarbeiten kein Grundwasser angetroffen, es kann jedoch nicht gänzlich ausgeschlossen werden. Die vorliegenden Böden sind nur mäßig vernässungsempfindlich, dennoch kann es zu Problemen mit der Verdichtbarkeit bei zu hohen Wassergehalten kommen. Eine ausreichend bemessene Wasserhaltung ist daher betriebsbereit vorzuhalten.

Hinterfüllbereiche der Widerlager (1,0 m hinter Fundamenthinterkante und anschließender Neigung von 1:1) sind mit gut verdichtbarem, wasserdurchlässigem Lockergesteinsmaterial zu verfüllen. Das Hinterfüllmaterial ist lagenweise (d \leq 0,3 m verdichtet) einzubringen. Einzellagen sind mit geeigneter Technik auf $D_{Pr} \geq$ 100 % / E_{v2} -Wert \geq 100 MN/m² zu verdichten.

Eine Durchsickerung des Hinterfüll- und Überschüttbereichs ist durch keilförmige Hinterfüllung mit Mischkiesfilter, Einbau einer filterstabilen Drainageschicht/Filter oder ein geotextiles Dränelement zu vermeiden.

Bei den Verdichtungsarbeiten ist darauf zu achten, dass Abdichtungen, Durchlässe und andere Dränelemente nicht beschädigt werden. Weiterhin sind Arbeitsräume frei von Baustellenabfällen (z.B. Folie) zu halten.

6. Zusätzliche Bemerkungen

Die durchgeführten geotechnischen Arbeiten und labormechanischen Untersuchungen sowie sich daraus abzuleitenden Bewertungen können für den Untersuchungsbereich als repräsentativ angesehen werden. Den Ergebnissen liegen jedoch nur Erkenntnisse aus punktuellen Aufschlüssen zugrunde, so dass abweichende Einschätzungen hinsichtlich der erkundeten Untergrundverhältnisse nicht ausgeschlossen werden können.

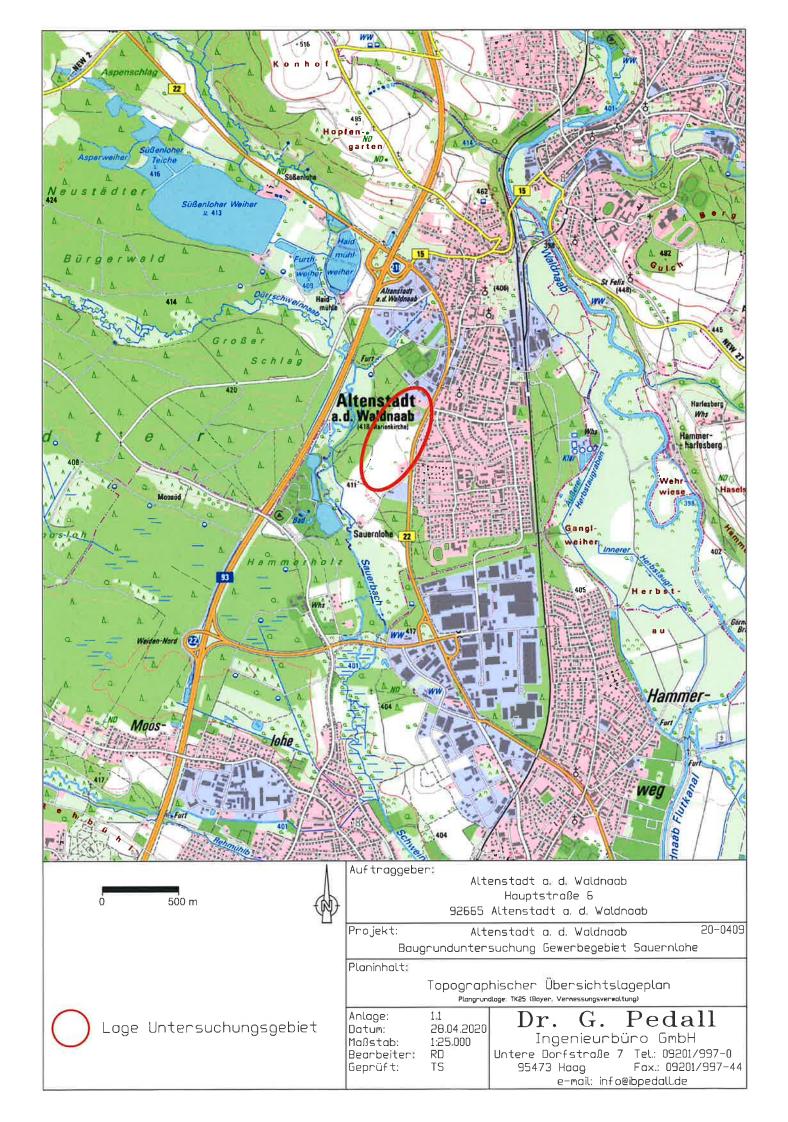
Bei Auffälligkeiten (z.B. weiche Konsistenz des Bodens, auffälliger Geruch) und wesentlichen Planänderungen wird empfohlen, den Baugrundgutachter in Kenntnis zu setzen und bei ggf. auszuführenden Erdarbeiten eine ingenieurtechnische/gutachterliche Begleitung vornehmen zu lassen.

Für Rückfragen – auch im Rahmen von Vor- oder Baustellenbesprechungen – stehen wir gerne zur Verfügung und empfehlen dringend, wesentliche Zustände des Erdbaus vom Baugrundgutachter abnehmen zu lassen.

Dr. G. Pedall Ingenieurbüro GmbH

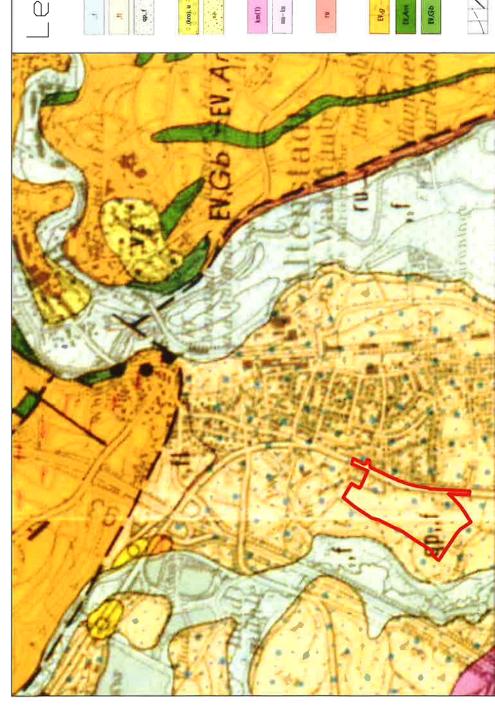
S. Pedall

Dipl.-Ing.(FH) Steine und Erden


i. A. T. Sluka

M.Sc. Geoökol.

ANLAGEN


Anlage 1.1

Topographischer Übersichtslageplan, M 1:25.000

Anlage 1.2

Geologische Karte, M 1:20.000

-egende

fluvatıle Ablagerungen größerer Talauen: Auenlehm über pleistozänem Kies und Sand

Fließerde, Fließlehm, Hangschutt in größerer Machtigkeit und Verbreitung

PLEISTOZÄN HOLOZAN

fluviatile Ablagerungen verschiedener Terrassen: Sand und Kies

TERTIÄR (-- QUARTÄR)

NEOGEN - PLEISTOZAN

Umlagerungsprodukte von Oberkreide-Schotter-matenal Verwitterungsbildungen in größerer Mächtigkeit, mit Schotter- und Geröllstreu MITTLERER KEUPER

Arkose Sandstein Tonstein (Benker Sandstein)

(E)(E)

TRIAS

Sandstein z T karbonalisch Tonste

KARBON-PERM

OBERER MUSCHELKALK-UNTERER KEUPER

TIEFERES ROTLIEGENDES (einschließlich Anteile des Stefans)

GNEIS-METABASIT-KOMPLEX DER ZONE VON ERBENDORF-VOHENSTRAUSS (NEUSTÄDTER SCHOLLLE) Tonstein Siltstein Sandstein, Arkose z T karbonatisch mit Schwarzschiefer- und Kohleenlagerungen

Botit - bis Muskovit - Biolit - Paragneis mit wechselnden Anteilen faziestypischer Minerale (Kyanit, Sillimanit, Granat).

graphitfuhrend, gebietsweise myloninisch oder sphithoritisch überprägt (a), starker feldspatmetablastisch (b)

ALLGEMEINE SIGNATUREN

Storung: im Streichen nachgewiesen/vermutel bzw.verdeckt/mit Gangquarzmineralisation

Altenstadt a. d. Waldnaab Hauptstraße 6 Auf traggeber:

92665 Altenstadt a. d. Waldnaab Altenstadt a. d. Waldnaab

Baugrunduntersuchung Gewerbegebiet Sauernlohe

20-0409

Ausschnitt aus der geologischen Karte

Planinhalt:

Projekt:

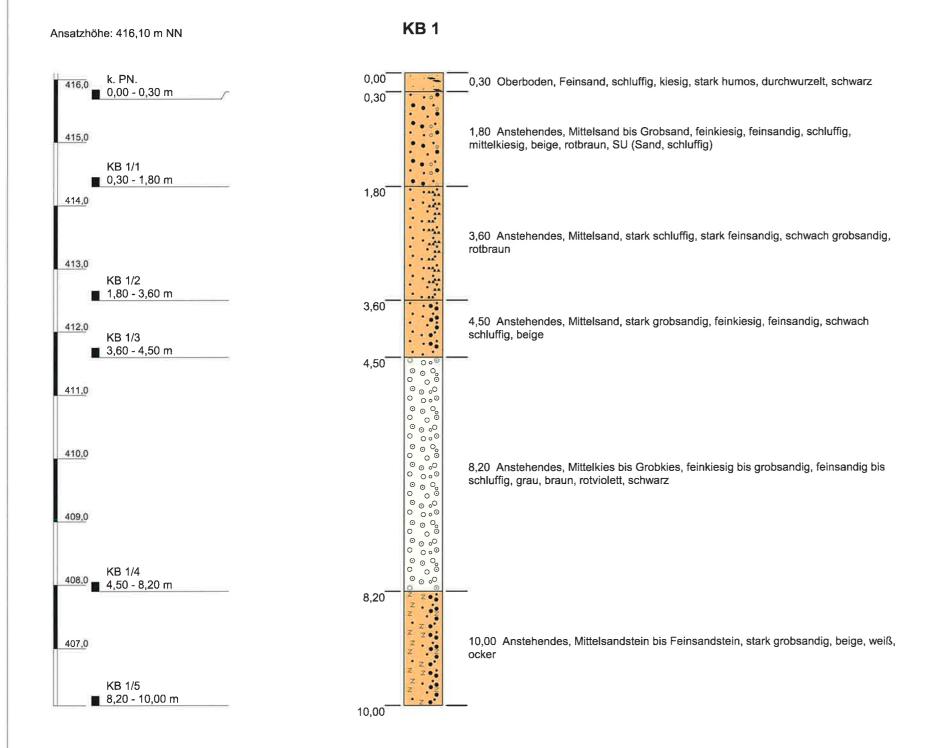
Plangrundlage: GK50 KTB-Umfeld (NLB, GLA)

1.2 28.04.2020 1:20.000 RD TS Bearbeiter: Geprüft: Maßstab: Anlage: Datum:

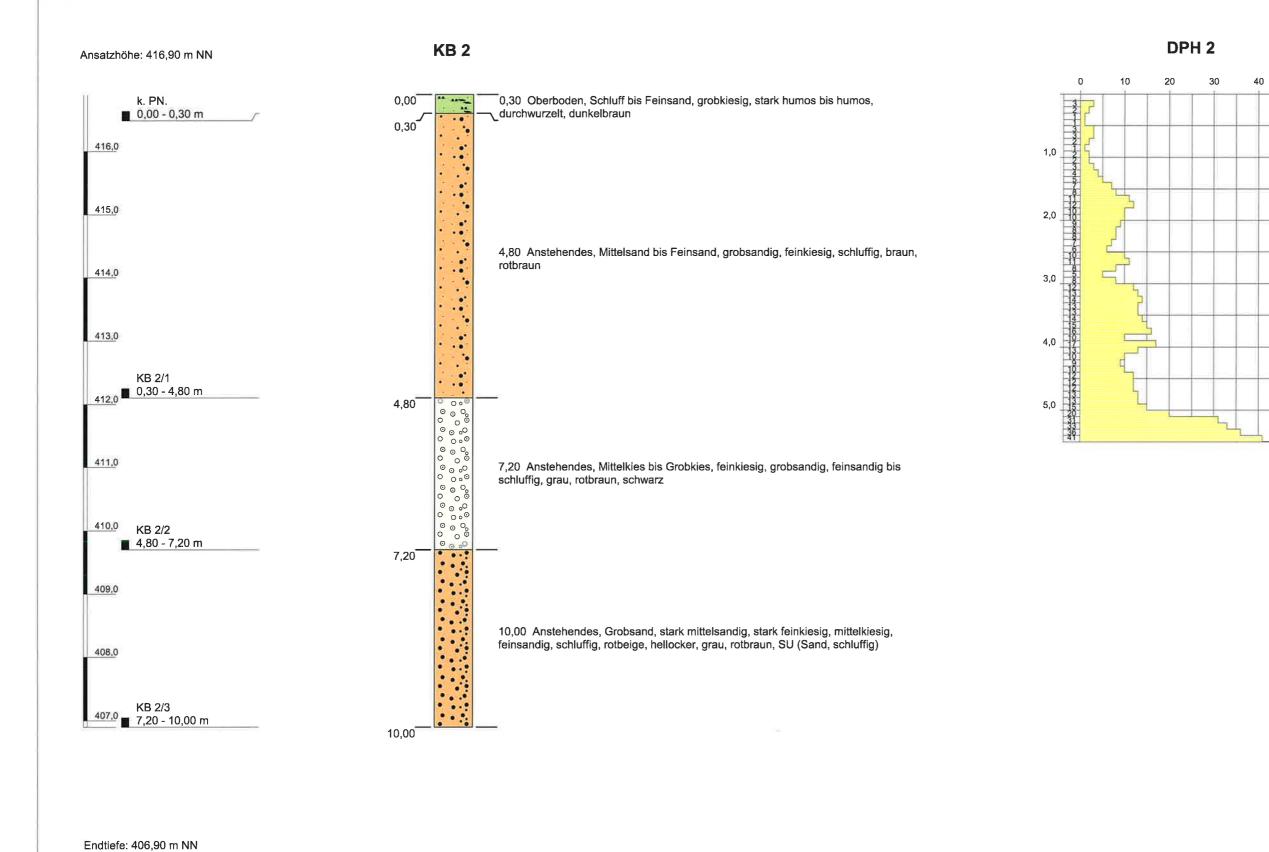
Untere Dorfstraße 7 Tel.: 09201/997-0 95473 Haag Fax.: 09201/997-44 Pedal Ingenieurbüro GmbH

e-mail: info@ibpedall.de

Lage Untersuchungsfläche


Anlage 2

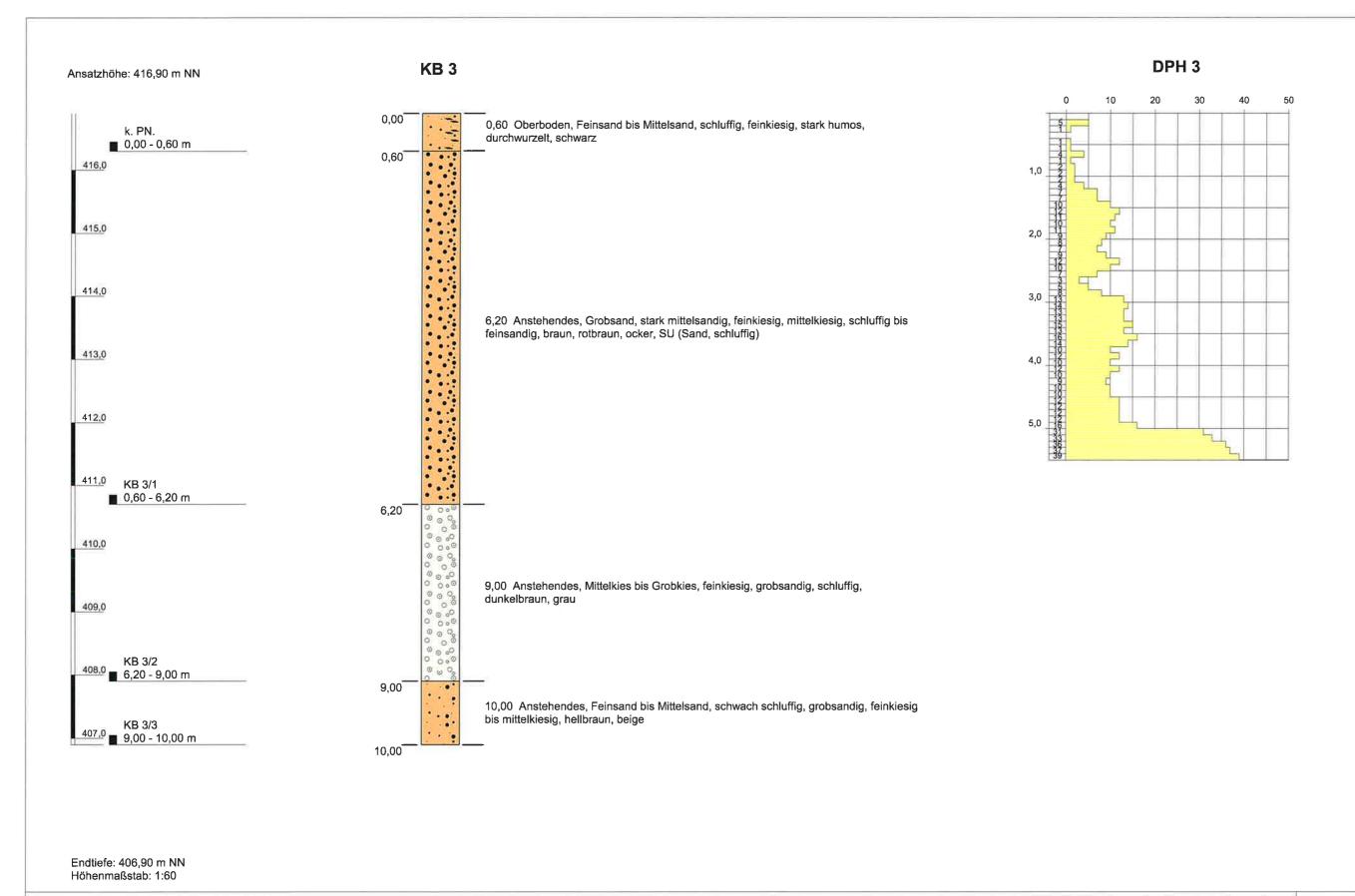
Detaillageplan mit Eintragung der Aufschlusspunkte, M 1:1.250


Anlage 3

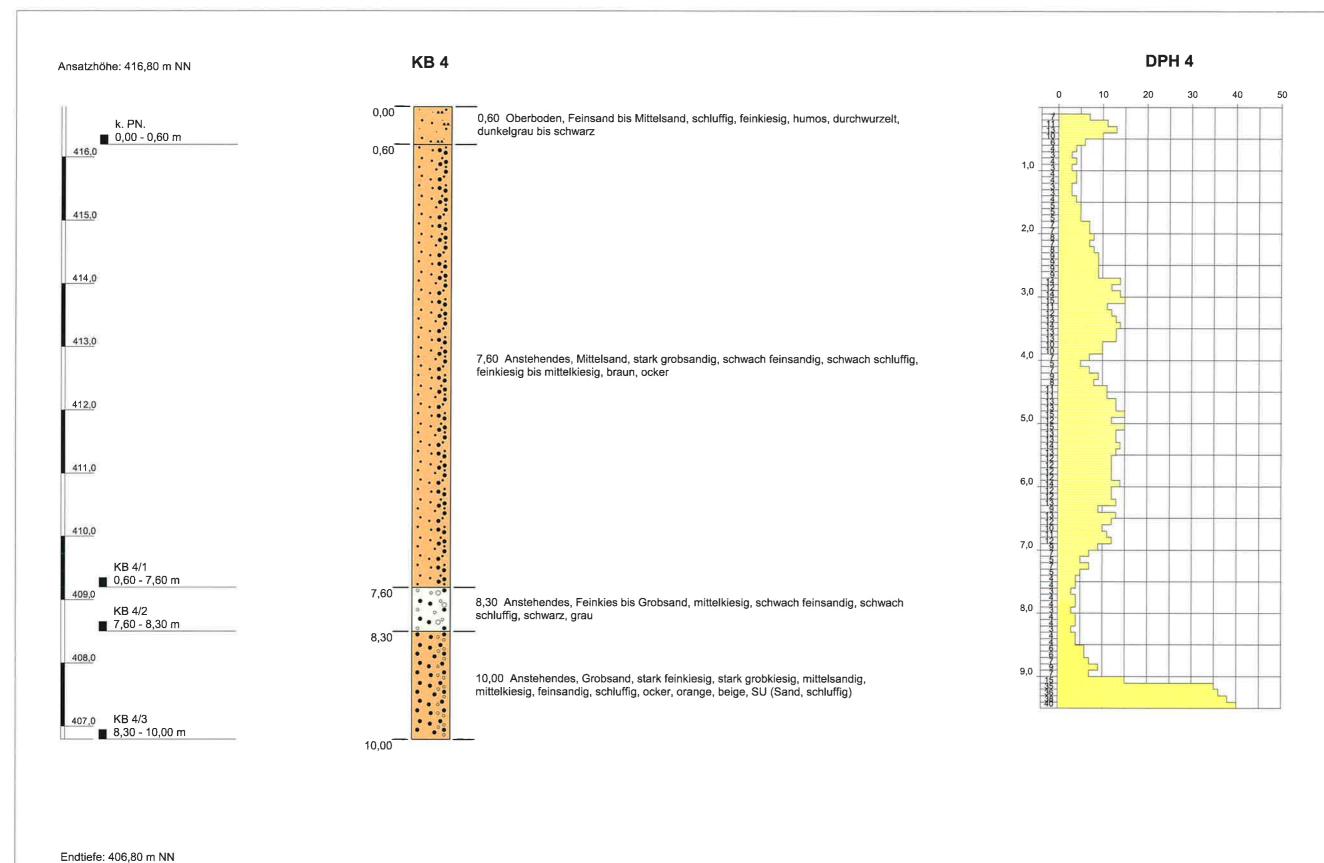
Bohrprofile der Kernbohrungen und Rammsondierungen, M 1:60

Endtiefe: 406,10 m NN Höhenmaßstab: 1:60

Projekt:	20-0409-3 Altenstadt/WN LSW B22				1
Bohrung:	KB 1			DR. G. PEDALL	INGENIEURBÜRO GMBH
Auftraggebe	r: Gemeinde Altens	adt a.d. Waldnaab	Rechtswert: 4511243		Untere Dorfstr. 7, 95473 Haag
Bohrfirma:	Lutz Grimm Geot	stbohrtechnik	Hochwert: 5508354		Tel.: 09201-997-0
Bearbeiter:	TS		Höhe: 416,10 m NN		Fax: 09201-997-44 E-Mail: info@ibpedall.de
Datum:	19.04.2021	Anlage 3	Endtiefe: 406,10 m NN		

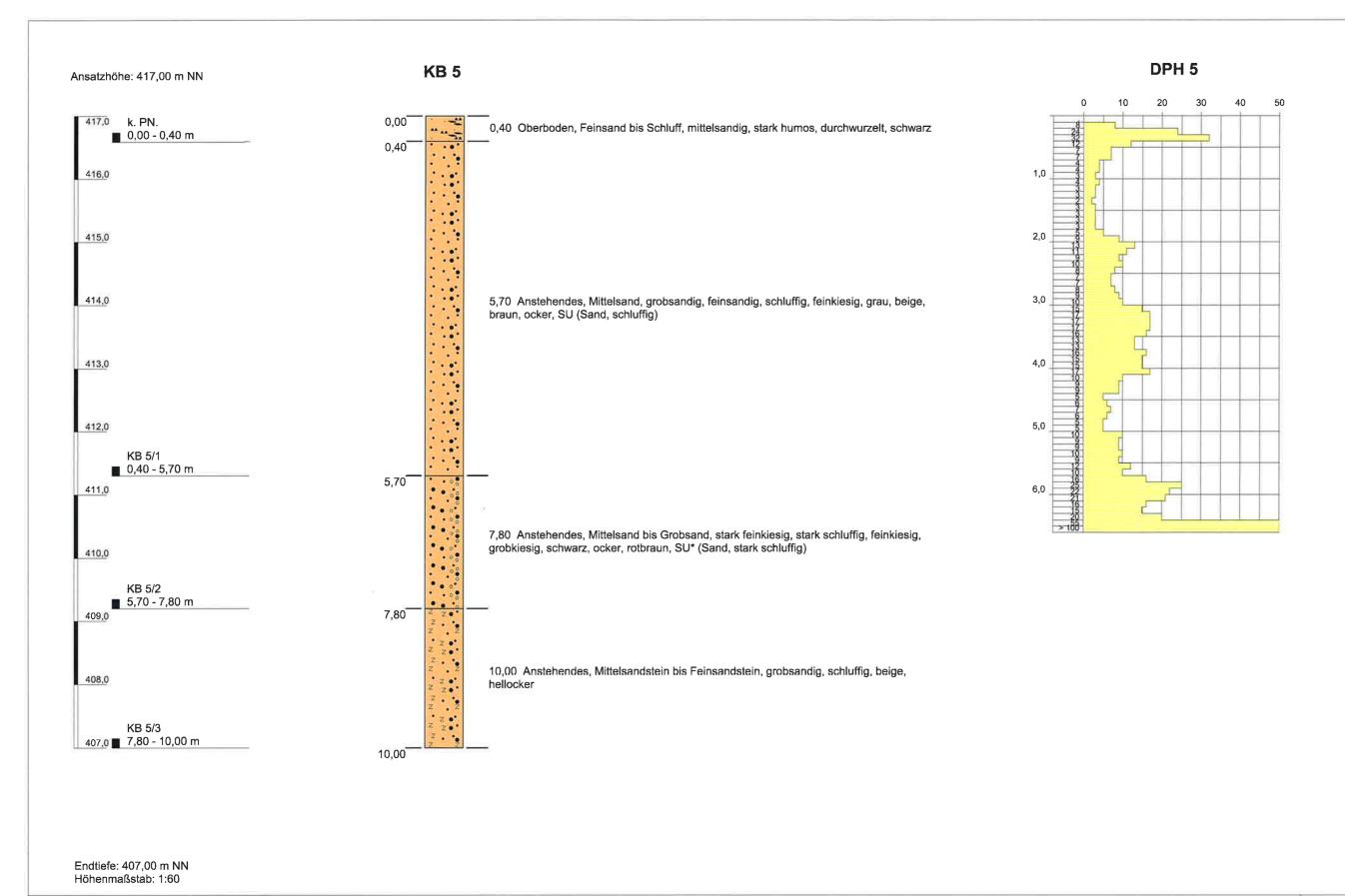


Höhenmaßstab: 1:60


Projekt: 20-0409-3 Altenstadt/WN LSW B22

i rojoke.	20 0400 071	toriotate first bar			
Bohrung:	KB 2			DR. G. PEDALL	INGENIEURBÜRO GMBH
Auftraggeber:	Gemeinde Alte	nstadt a.d. Waldnaab	Rechtswert: 4511262		Untere Dorfstr. 7, 95473 Haag
Bohrfirma:	Lutz Grimm Geotestbohrtechnik		Hochwert: 5508437		Tel.: 09201-997-0
Bearbeiter:	TS Höhe: 416,90 m NN				Fax: 09201-997-44 E-Mail: info@ibpedall.de
Datum:	19.04.2021	Anlage 3	Endtiefe: 406,90 m NN		

50



Projekt:	20-0409-3 Alte	nstadt/WN LSW B22				ľ
Bohrung:	KB 3				DR. G. PEDALL	INGENIEURBÜRO GMBH
Auftraggeber:	Gemeinde Altenst	adt a.d. Waldnaab	Rechtswert:	4511293		Untere Dorfstr. 7, 95473 Haag
Bohrfirma:	Lutz Grimm Geote	stbohrtechnik	Hochwert:	5508516		Tel.: 09201-997-0
Bearbeiter:	TS		Höhe:	416,90 m NN		Fax: 09201-997-44 E-Mail: info@ibpedall.de
Datum:	19.04.2021	Anlage 3	Endtiefe:	406,90 m NN		

Höhenmaßstab: 1:60

Projekt:	20-0409-3 Alte	stadt/WN LSW B22				
Bohrung:	KB 4				DR. G. PEDALL	INGENIEURBÜRÓ GMBH
Auftraggeber:	Gemeinde Altenst	dt a.d. Waldnaab	Rechtswert:	4511324		Hatan Parish 7, 05470 Hann
Bohrfirma:	Lutz Grimm Geote	tbohrtechnik	Hochwert:	5508582		Untere Dorfstr. 7, 95473 Haag Tel.: 09201-997-0
Bearbeiter:	TS		Höhe:	416,80 m NN		Fax: 09201-997-44 E-Mail: info@ibpedall.de
Datum:	19.04.2021	Anlage 3	Endtiefe:	406,80 m NN		

Projekt:	20-0409-3 Alte	nstadt/WN LSW B22				I	
Bohrung:	KB 5				DR. G. PEDALL	INGENIEURBÜRO GMBH	
Auftraggeber:	Auftraggeber: Gemeinde Altenstadt a.d. Waldnaab Rechtswert: 4511345						
Bohrfirma:	Lutz Grimm Geote	stbohrtechnik	Hochwert:	5508626		Untere Dorfstr. 7, 95473 Haag Tel.: 09201-997-0	
Bearbeiter:	TS		Höhe:	417,00 m NN		Fax: 09201-997-44 E-Mail: info@ibpedall.de	
Datum:	19.04.2021	Anlage 3	Endtiefe:	407.00 m NN	7		

Anlage 4

Tabellarische Zusammenstellung der chemischen Analytik

20-0409-3

angewendete Vergleichstabelle: LAGA TR Boden (1997) Tabelle II.1.2-2/-3

Bezeichnung	Einheit	0 Z	Z 1.1	Z 1.2	22	KB 1/4 (4,5-8,2)	KB 2/1 (0,3-4,8)	KB 3/2 (6,2-9,0)	KB 4/1 (0,6-7,6)	KB 5/3 (7,8-10,0)
Probennummer						120174429	120174430	120174431	120174432	120174433
Schicht						Anst.	Anst.	Anst.	Anst.	Anst.
Anzuwendende Klasse(n):						Z 1.2	*0 Z	2.2	2 O	2.2
Physikalisch-chemische Kenngrößen aus der Originalsubstanz	alsubstanz									
Trockenmasse	Ma%					95,2	93,4	6'26	6'96	6'26
pH in CaCl2		5,5 - 8	5,5-8	5-9		5,9	4,6	5,4	5,7	5,8
Organische Summenparameter aus der Originalsubstanz	stanz									
EOX	mg/kg TS	1	50	10	15	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
Kohlenwasserstoffe C10-C22	mg/kg TS					< 40	< 40	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	mg/kg TS	100	300	200	1000	< 40	< 40	< 40	< 40	< 40
Benzol	mg/kg TS					< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Summe BTEX	mg/kg TS	<1	1	3	5	(n. b.)				
Summe LHKW (10 Parameter)	mg/kg TS	<1	1	3	5	(n. b.)	60'0	(n. b.)	(n. b.)	(n. b.)
Naphthalin	mg/kg TS		(0)]	<1		< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Benzo[a]pyren	mg/kg TS		< 0,5	<1	10	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	mg/kg TS	1	S	15	20	(n. b.)				
Summe 6 DIN-PCB exkl. BG	mg/kg TS	0,02	10,1	6,5	1	(n. b.)				
Elemente aus dem Königswasseraufschluss nach DIN EN 13657	N EN 13657									
Arsen (As)	mg/kg TS	20	30	20	150	3,7	4,2	2,2	4,3	2,5
Blei (Pb)	mg/kg TS	100	200	300	1000	298	14	370	91	965
Cadmium (Cd)	mg/kg TS	9′0	FI.	3	10	< 0,2	< 0,2	2,1	< 0,2	< 0,2
Chrom (Cr)	mg/kg TS	50	100	200	009	22	15	21	15	2
Kupfer (Cu)	mg/kg TS	40	100	200	009	12	10	11	14	S
Nickel (Ni)	mg/kg TS	40	100	200	009	12	11	14	11	4
Quecksilber (Hg)	mg/kg TS	0,3	-	3	10	< 0,07	< 0,07	< 0,07	< 0,07	< 0,07
Thallium (TI)	mg/kg TS	5'0	Ŧ	3	10	6,0	0,2	0,3	< 0,2	< 0,2
Zink (Zn)	mg/kg TS	120	300	200	1500	99	35	115	38	101
Anionen aus der Originalsubstanz										
Cyanide, gesamt	mg/kg TS	1	10	30	100	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Physikalisch-chemische Kenngrößen aus dem 10:1-Schütteleluat nach DIN EN	Schütteleluat n	ach DIN EN	12457-4							
pH-Wert		6-2'9	6-8-9	6 - 12	5,5 - 12	6,2	5,1	6,2	6,5	0′9
Leitfähigkeit bei 25°C	mS/cm	200	500	1000	1500	40	25	28	18	26
Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4	2457-4									
Chlorid (Cl)	mg/l	10	OII	20	30	7,7	3,7	7,7	2,1	4,8
Sulfat (SO4)	mg/l	20	220	100	150	3,3	3,2	< 1,0	< 1,0	2,4
Cyanide, gesamt <10	l/gri	< 10	10	50	100	< 5	< 5	< 5	< 5	< 5
Organische Summenparameter aus dem 10:1-Schü	tteleluat nach [JIN EN 1245	7-4							
Phenolindex, wasserdampfflüchtig	l/gn	< 10	10	50	100	< 10	< 10	< 10	< 10	< 10
Elemente aus dem 10:1-Schütteleluat nach DIN EN 12457-4	12457-4									
Arsen (As)	l/Bri	10	110	40	09	<1	<1	<1	1	<1
Blei (Pb)	l/8rl	20	40	100	200	\ 1	<1	1	6	3
Cadmium (Cd)	l/8n	2	2	5	10	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
Chrom (Cr)	/Brl	15	30	75	150	× 1	<1	<1	3	1
Kupfer (Cu)	/8rl	20	50	150	300	< 5	<5	<5	9	< 5
Nickel (Ni)	/8rl	40	50	150	200	× 1	< 1	<1	ю	< 1
Quecksilber (Hg)	hg/l	0,2	6,2	1	2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Thallium (TI)	l/Bri	<1	H	3	2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Zink (Zn)	l/8rl	100	100	300	009	< 10	< 10	< 10	< 10	< 10

n.b.: nicht berechenbar * der pH-Wert stellt kein alleiniges Ausschlusskriterium dar

angewendete Vergleichstabelle: DepV, DK 0 - III (04.07.2020)

Bezeichnung Probennummer Schicht	Einheit	DK 0	DKI	DK II	≡ K≡	(4 5.8 2)	(0.3-4.8)	(6,2-9,0)	(0,6-7,6)	(7,8-10,0)
Probennummer Schicht						(4,0-0,4)	1-1-1-1			CCANTINCE
Schicht Anzumendende Klacce(n).						120174429	120174430	120174431	120174432	1201/4433
Anzimondondo Klaccofni.						Anst.	Anst.	Anst.	Anst.	Anst.
All Law Clincing Masse(11).						DK 0	DK 0*	DK 0	DK 0	DK 0
Physikalisch-chemische Kenngrößen aus der Originalsubstanz	alsubstanz									
Trockenmasse	Ma%					95,2	93,4	95,9	6,3	62'6
Organischer Anteil des Trockenrückstandes der Originalsubstanz	ginalsubstanz									
Glühverlust (550 °C)	Ma%TS	3	3	5	10	2,0	1,3	1,6	1,2	1,1
TOC	Ma%TS	1	1	3	9	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
Feststoffkriterien aus der Originalsubstanz										
Benzol	mg/kg TS					< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Summe BTEX + Styrol + Cumol	mg/kg TS	9				(n. b.)				
Summe PCB (7)	mg/kg TS	<1				(n. b.)				
Kohlenwasserstoffe C10-C22	mg/kg TS					< 40	< 40	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	mg/kg TS	200				< 40	< 40	< 40	< 40	< 40
Naphthalin	mg/kg TS					< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Benzo[a]pyren	mg/kg TS					< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	mg/kg TS	30				(n. b.)				
Schwerflüchtige lipophile Stoffe	Ma% TS	0,1	0,4	8′0	4	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
Eluatkriterien nach DIN EN 12457-4: 2003-01										
pH-Wert		5,5 - 13	5,5 - 13	5,5 - 13	4 - 13	6,2	5,1	6,2	6,5	0′9
Gelöster org. Kohlenstoff (DOC)	mg/l	20	20	80	100	3,1	5,1	4,6	6'5	5,4
Phenolindex, wasserdampfflüchtig	mg/l	0,1	0,2	20	100	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Arsen (As)	mg/l	0,05	0,2	0,2	2,5	< 0,001	< 0,001	< 0,001	0,001	< 0,001
Blei (Pb)	mg/l	0,05	0,2	1	5	< 0,001	< 0,001	0,001	600'0	0,003
Cadmium (Cd)	mg/l	0,004	0,05	0,1	9'0	< 0,0003	< 0,0003	< 0,0003	< 0,0003	< 0,0003
Kupfer (Cu)	mg/l	0,2	1	2	10	< 0,005	< 0,005	< 0,005	900'0	< 0,005
Nickel (Ni)	mg/l	0,04	0,2	1	4	< 0,001	< 0,001	< 0,001	0,003	< 0,001
Quecksilber (Hg)	mg/l	0,001	0,005	0,02	0,2	< 0,0002	< 0,0002	< 0,0002	< 0,0002	< 0,0002
Zink (Zn)	mg/l	0,4	2	2	20	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Chlorid (CI)	l/gm	80	1500	1500	2500	7,7	3,7	7,7	2,1	4,8
Sulfat (SO4)	mg/l	100	2000	2000	2000	3,3	3,2	< 1,0	< 1,0	2,4
Cyanid leicht freisetzbar / Cyanid frei	mg/l	0,01	0,1	0,5	1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005
Fluorid	mg/l	1	5	15	50	< 0,2	< 0,2	< 0,2	6,0	< 0,2
Barium (Ba)	mg/l	2	5	10	30	< 0,001	0,003	0,001	0,025	< 0,001
Chrom (Cr)	mg/l	0,05	0,3	1	7	< 0,001	< 0,001	< 0,001	0,003	0,001
Molybdän (Mo)	mg/l	0,05	0,3	1	3	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Antimon (Sb)	l/gm	900'0	0,03	20'0	6,5	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Selen (Se)	mg/l	0,01	0,03	0,05	0,7	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Gesamtgehalt an gelösten Feststoffen	mg/l	400	3000	0009	10000	< 150	< 150	< 150	< 150	< 150

n.b.: nicht berechenbar * der pH-Wert stellt kein alleiniges Ausschlusskriterium dar

Anlage 5

Prüfprotokolle der chemischen Untersuchungen

Eurofins Umwelt Ost GmbH - Lindenstraße 11 Gewerbegebiet Freiberg Ost - D-09627 - Bobritzsch-Hilbersdorf

Dr. Pedall Ingenieurbüro GmbH Untere Dorfstraße 7 95473 Haag

Titel: Prüfbericht zu Auftrag 12046144

Prüfberichtsnummer: AR-21-FR-000100-01

Auftragsbezeichnung: 20-0409 Altenstadt a.d. Waldnaab BG Sauernlohe

Anzahl Proben: 5

Probenart: Boden

Probenahmedatum: 03.12.2020, 04.12.2020, 07.12.2020

Probenehmer: Auftraggeber

Probeneingangsdatum: 18.12.2020

Prüfzeitraum: **18.12.2020 - 04.01.2021**

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Sophie Maixner Digital signiert, 04.01.2021

Prüfleitung Katja Schulze
Tel. +49 37312076646 Prüfleitung

Umwelt

				Probenbez	eichnung	KB 1/4 (4,5-8,2)	KB 2/1 (0,3-4,8)	KB 3/2 (6,2-9,0)
				Probenahm	edatum/ -zeit	03.12.2020	03.12.2020	03.12.2020
				Probennum	ımer	120174429	120174430	120174431
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Probenvorbereitung Feststo	ffe			-				
Probenbegleitprotokoll	FR					siehe Anlage	siehe Anlage	siehe Anlage
Probenmenge inkl. Verpackung	FR	RE000 FY	DIN 19747: 2009-07		kg	5,2	4,4	4,1
Fremdstoffe (Art)	FR	RE000 FY	DIN 19747: 2009-07			nein	nein	nein
Fremdstoffe (Menge)	FR	RE000 FY	DIN 19747: 2009-07		g	0,0	0,0	0,0
Siebrückstand > 10mm	FR	RE000 FY	DIN 19747: 2009-07			Ja	Ja	Ja
Rückstellprobe	FR		Hausmethode	100	g	1720	1620	1400
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz				
Trockenmasse	FR	RE000 FY	DIN EN 14346: 2007-03	0,1	Ma%	95,2	93,4	95,9
pH in CaCl2	FR	RE000 FY	DIN ISO 10390: 2005-12			5,9	4,6	5,4
Anionen aus der Originalsul	bstanz	Z					-	
Cyanide, gesamt	FR	RE000 FY	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5	< 0,5	< 0,5
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	13657: 2003-	01*		hi—	
Arsen (As)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	3,7	4,2	2,2
Blei (Pb)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	298	14	370
Cadmium (Cd)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2	< 0,2	2,1
Chrom (Cr)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	22	15	21
Kupfer (Cu)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	12	10	11
Nickel (Ni)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	12	11	14
Quecksilber (Hg)	FR	RE000 FY	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07	< 0,07	< 0,07
Thallium (TI)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	0,3	0,2	0,3
Zink (Zn)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	66	35	115
Organische Summenparame	eter au	us der	Originalsubstanz	,I,			I)	
Glühverlust (550 °C)	FR	RE000 FY	DIN EN 15169: 2007-05	0,1	Ma% TS	2,0	1,3	1,6
TOC	FR	RE000 FY	DIN EN 15936: 2012-11	0,1	Ma% TS	< 0,1	< 0,1	< 0,1
EOX	FR	RE000 FY	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	< 1,0	< 1,0
Extrahierbare lipophile Stoffe	FR	RE000 FY	LAGA KW/04: 2019-09	0,02	Ma% TS	< 0,02	< 0,02	< 0,02
Kohlenwasserstoffe C10-C22	FR	RE000 FY	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	FR	RE000 FY	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40	< 40

Umwelt

				Probenbeze	ichnung	KB 1/4 (4,5-8,2)	KB 2/1 (0,3-4,8)	KB 3/2 (6,2-9,0)
				Probenahm	edatum/ -zeit	03.12.2020	03.12.2020	03.12.2020
				Probennum	mer	120174429	120174430	120174431
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
BTEX und aromatische Koh	lenwa			nalsubstanz				
Benzol	FR	FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Toluol	FR	FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Ethylbenzol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
m-/-p-Xylol	FR	FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
o-Xylol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe BTEX	FR	RE000 FY	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾	(n. b.) ¹⁾
Isopropylbenzol (Cumol)	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Styrol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe BTEX + Styrol + Cumol	FR	RE000 FY	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾	(n. b.) ¹⁾
LHKW aus der Originalsubs	tanz				di			
Dichlormethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
trans-1,2-Dichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
cis-1,2-Dichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Chloroform (Trichlormethan)	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,1,1-Trichlorethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Tetrachlormethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Trichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Tetrachlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	0,09	< 0,05
1,1-Dichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,2-Dichlorethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe LHKW (10 Parameter)	FR	RE000 FY	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	0,09	(n. b.) ¹⁾

Umwelt

				Probenbeze	eichnung	KB 1/4 (4,5-8,2)	KB 2/1 (0,3-4,8)	KB 3/2 (6,2-9,0)
				Probenahm	edatum/ -zeit	03.12.2020	03.12.2020	03.12.2020
				Probennum	mer	120174429	120174430	120174431
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
PAK aus der Originalsubsta	nz							
Naphthalin	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthylen	FR	RE000 FY	DIN ISO 18287; 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Phenanthren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Anthracen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoranthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0.05	< 0,05
Pyren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]anthracen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Chrysen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[b]fluoranthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[k]fluoranthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]pyren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Dibenzo[a,h]anthracen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[ghi]perylen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	FR	RE000 FY	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) ¹⁾
Summe 15 PAK ohne Naphthalin exkl.BG	FR	RE000 FY	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) 1)	(n. b.) ¹⁾	(n. b.) ¹⁾
PCB aus der Originalsubsta	nz			7.1				
PCB 28	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 52	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 101	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 153	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 138	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 180	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG	FR	RE000 FY	DIN EN 15308; 2016-12		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾	(n. b.) ¹⁾
PCB 118	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
Summe PCB (7)	FR	RE000 FY	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾	(n. b.) ¹⁾

				Probenbeze	ichnung	KB 1/4 (4,5-8,2)	KB 2/1 (0,3-4,8)	KB 3/2 (6,2-9,0)
				Probenahme	edatum/ -zeit	03.12.2020	03.12.2020	03.12.2020
				Probennumi	mer	120174429	120174430	120174431
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Physchem. Kenngrößen a	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01			
pH-Wert	FR	RE000 FY	DIN EN ISO 10523 (C5): 2012-04			6,2	5,1	6,2
Temperatur pH-Wert	FR	RE000 FY	DIN 38404-4 (C4): 1976-12		°C	18,0	18,7	17,0
Leitfähigkeit bei 25°C	FR	RE000 FY	DIN EN 27888 (C8): 1993-11	5	μS/cm	40	25	28
Wasserlöslicher Anteil	FR	RE000 FY	DIN EN 15216: 2008-01	0,15	Ma%	< 0,15	< 0,15	< 0,15
Gesamtgehalt an gelösten Feststoffen	FR	RE000 FY	DIN EN 15216: 2008-01	150	mg/l	< 150	< 150	< 150
Anionen aus dem 10:1-Sch	üttelelı	uat nac	ch DIN EN 12457-4:	2003-01				
Fluorid	FR	RE000 FY	DIN EN ISO 10304-1 (D20): 2009-07	0,2	mg/l	< 0,2	< 0,2	< 0,2
Chlorid (CI)	FR	RE000 FY	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	7,7	3,7	7,7
Sulfat (SO4)	FR	RE000 FY	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	3,3	3,2	< 1,0
Cyanide, gesamt	FR	RE000 FY	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005	< 0,005	< 0,005
Cyanid leicht freisetzbar / Cyanid frei	FR	RE000 FY	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005	< 0,005	< 0,005
Elemente aus dem 10:1-Sc	hüttele	luat na	ich DIN EN 12457-4	: 2003-01				
Antimon (Sb)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Arsen (As)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Barium (Ba)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	0,003	0,001
Blei (Pb)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	0,001
Cadmium (Cd)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	< 0,0003	< 0,0003
Chrom (Cr)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Kupfer (Cu)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005	< 0,005	< 0,005
Molybdän (Mo)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Nickel (Ni)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Quecksilber (Hg)	FR	RE000 FY	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002	< 0,0002	< 0,0002
Selen (Se)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001	< 0,001
Thallium (TI)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002	< 0,0002	< 0,0002
Zink (Zn)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01	< 0,01	< 0,01
Org. Summenparameter au	s dem	10:1-S	chütteleluat nach D	OIN EN 12457	-4: 2003-01			
Gelöster org. Kohlenstoff (DOC)	FR	RE000 FY	DIN EN 1484: 2019-04	1,0	mg/l	3,1	5,1	4,6
Phenolindex, wasserdampfflüchtig	FR	RE000 FY	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01	< 0,01	< 0,01

				Probenbezeichnung Probenahmedatum/ -zeit		KB 4/1 (0,6-7,6)	KB 5/3 (7,8-10,0)
				Probenahm	nedatum/ -zeit	04.12.2020	07.12.2020
				Probennum	nmer	120174432	120174433
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
Probenvorbereitung Feststo	ffe						
Probenbegleitprotokoll	FR					siehe Anlage	siehe Anlage
Probenmenge inkl. Verpackung	FR	RE000 FY	DIN 19747: 2009-07		kg	4,4	4,4
Fremdstoffe (Art)	FR	RE000 FY	DIN 19747: 2009-07			nein	nein
Fremdstoffe (Menge)	FR	RE000 FY	DIN 19747: 2009-07		g	0,0	0,0
Siebrückstand > 10mm	FR	RE000 FY	DIN 19747: 2009-07			Ja	Ja
Rückstellprobe	FR		Hausmethode	100	g	1500	1420
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz			
Trockenmasse	FR	RE000 FY	DIN EN 14346: 2007-03	0,1	Ma%	96,3	95,9
pH in CaCl2	FR	RE000 FY	DIN ISO 10390: 2005-12			5,7	5,8
Anionen aus der Originalsul	bstan	Z					
Cyanide, gesamt	FR	RE000 FY	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5	< 0,5
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	13657: 2003-	01#		
Arsen (As)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	4,3	2,5
Blei (Pb)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	91	496
Cadmium (Cd)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2	< 0,2
Chrom (Cr)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	15	5
Kupfer (Cu)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	14	5
Nickel (Ni)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	11	4
Quecksilber (Hg)	FR	RE000 FY	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07	< 0,07
Thallium (TI)	FR	FY	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2	< 0,2
Zink (Zn)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	38	101
Organische Summenparamo	eter a	ıs der	Originalsubstanz				
Glühverlust (550 °C)	FR	RE000 FY	DIN EN 15169: 2007-05	0,1	Ma% TS	1,2	1,1
тос	FR	RE000 FY	DIN EN 15936: 2012-11	0,1	Ma% TS	< 0,1	< 0,1
EOX	FR	RE000 FY	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	< 1,0
Extrahierbare lipophile Stoffe	FR	RE000 FY	LAGA KW/04: 2019-09	0,02	Ma% TS	< 0,02	< 0,02
Kohlenwasserstoffe C10-C22	FR	RE000 FY	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40
Kohlenwasserstoffe C10-C40	FR	RE000 FY	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40

				Probenbeze	ichnung	KB 4/1 (0,6-7,6)	KB 5/3 (7,8-10,0)
				Probenahme	edatum/ -zeit	04.12.2020	07.12.2020
				Probennumi	mer	120174432	120174433
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origi	inalsubstanz			
Benzol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Toluol	FR	RE000 FY	DIN EN ISO 22155; 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Ethylbenzol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
m-/-p-Xylol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
o-Xylol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Summe BTEX	FR	RE000 FY	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	(n. b.) 1)
Isopropylbenzol (Cumol)	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Styrol	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Summe BTEX + Styrol + Cumol	FR	RE000 FY	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾
LHKW aus der Originalsubs	tanz						
Dichlormethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
trans-1,2-Dichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
cis-1,2-Dichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Chloroform (Trichlormethan)	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
1,1,1-Trichlorethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Tetrachlormethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Trichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Tetrachlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
1,1-Dichlorethen	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
1,2-Dichlorethan	FR	RE000 FY	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Summe LHKW (10 Parameter)	FR	RE000 FY	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾

				Probenbezei	ichnung	KB 4/1 (0,6-7,6)	KB 5/3 (7,8-10,0)
				Probenahme	edatum/ -zeit	04.12.2020	07.12.2020
				Probennumr	ner	120174432	120174433
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
PAK aus der Originalsubsta	nz			•			
Naphthalin	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthylen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Fluoren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Phenanthren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Anthracen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Fluoranthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Pyren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[a]anthracen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Chrysen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[b]fluoranthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[k]fluoranthen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[a]pyren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Dibenzo[a,h]anthracen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[ghi]perylen	FR	RE000 FY	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	FR	RE000 FY	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾
Summe 15 PAK ohne Naphthalin exkl.BG	FR	RE000 FY	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾
PCB aus der Originalsubsta	nz		1-1			100	
PCB 28	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 52	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 101	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 153	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 138	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 180	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG	FR	RE000 FY	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)	(n. b.) ¹⁾
PCB 118	FR	RE000 FY	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
Summe PCB (7)	FR	RE000 FY	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)	(n. b.) 1)

				Probenbeze		KB 4/1 (0,6-7,6)	KB 5/3 (7,8-10,0)
				Probenahme	edatum/ -zeit	04.12.2020	07.12.2020
				Probennum	ner	120174432	120174433
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
Physchem. Kenngrößen a	us den			DIN EN 1245	7-4: 2003-01		
pH-Wert	FR	FY	DIN EN ISO 10523 (C5): 2012-04			6,5	6,0
Temperatur pH-Wert	FR	RE000 FY	DIN 38404-4 (C4): 1976-12		°C	17,8	17,5
Leitfähigkeit bei 25°C	FR	RE000 FY	DIN EN 27888 (C8): 1993-11	5	μS/cm	18	26
Wasserlöslicher Anteil	FR	RE000 FY	DIN EN 15216: 2008-01	0,15	Ma%	< 0,15	< 0,15
Gesamtgehalt an gelösten Feststoffen	FR	RE000 FY	DIN EN 15216: 2008-01	150	mg/l	< 150	< 150
Anionen aus dem 10:1-Sch	üttelelu	iat nac	ch DIN EN 12457-4:	2003-01			
Fluorid	FR	RE000 FY	DIN EN ISO 10304-1 (D20): 2009-07	0,2	mg/l	0,3	< 0,2
Chlorid (CI)	FR	RE000 FY	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	2,1	4,8
Sulfat (SO4)	FR	RE000 FY	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	< 1,0	2,4
Cyanide, gesamt	FR	RE000 FY	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005	< 0,005
Cyanid leicht freisetzbar / Cyanid frei	FR	RE000 FY	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005	< 0,005
Elemente aus dem 10:1-Sc	hüttelel	luat na	nch DIN EN 12457-4	: 2003-01			
Antimon (Sb)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Arsen (As)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001	< 0,001
Barium (Ba)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,025	< 0,001
Blei (Pb)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,009	0,003
Cadmium (Cd)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	< 0,0003
Chrom (Cr)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,003	0,001
Kupfer (Cu)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	0,006	< 0,005
Molybdän (Mo)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Nickel (Ni)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,003	< 0,001
Quecksilber (Hg)	FR	RE000 FY	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002	< 0,0002
Selen (Se)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Thallium (Tl)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002	< 0,0002
Zink (Zn)	FR	RE000 FY	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01	< 0,01
Org. Summenparameter au	s dem	10:1-S	chütteleluat nach D	OIN EN 12457	-4: 2003-01		
Gelöster org. Kohlenstoff (DOC)	FR	RE000 FY	DIN EN 1484: 2019-04	1,0	mg/l	5,9	5,4
Phenolindex, wasserdampfflüchtig	FR	RE000 FY	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01	< 0,01

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

* Aufschluss mittels temperaturregulierendem Graphitblock

Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit RE000FY gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

¹⁾ nicht berechenbar, da alle Werte < BG.

Probennummer 120174429
Probenbeschreibung KB 1/4 (4,5-8,2)

Probenvorbereitung

Probenehmer Auftraggeber

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Art): nein
Siebrückstand > 10mm: Ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1720 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II, III	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	х	х	х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	X	x		Glühverlust	< 5 mm	40 °C	< 150 µm	10 g
1.02	х	х		TOC	< 5 mm	40 °C	< 150 μm	2 g
2.01	×			втех	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	х		х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	×			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	×	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			х	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	х	Х	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	х	Х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	х	x		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	х	х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	х	x		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

Probennummer 120174430
Probenbeschreibung KB 2/1 (0,3-4,8)

Probenvorbereitung

Probenehmer Auftraggeber

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

 Fremdstoffe (Menge):
 0,0 g

 Fremdstoffe (Art):
 nein

 Siebrückstand > 10mm:
 Ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1620 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II, III	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	Х	х	х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	х	х		Glühverlust	< 5 mm	40 °C	< 150 µm	10 g
1.02	х	х		TOC	< 5 mm	40 °C	< 150 µm	2 g
2.01	x			втех	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	х		х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	×			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	×	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			Х	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	Х	х	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	х	х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	х	х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	х	х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	х	Х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

Probennummer 120174431
Probenbeschreibung KB 3/2 (6,2-9,0)

Probenvorbereitung

Probenehmer Auftraggeber

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Art): nein
Siebrückstand > 10mm: Ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1400 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II,	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	х	х	х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	х	X		Glühverlust	< 5 mm	40 °C	< 150 µm	10 g
1.02	х	x		тос	< 5 mm	40 °C	< 150 µm	2 g
2.01	×			BTEX	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	×		х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	×			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	x	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			х	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	х	x	х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	×	Х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	х	Х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	x	Х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	х	х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

Probennummer 120174432 Probenbeschreibung KB 4/1 (0,6-7,6)

Probenvorbereitung

Probenehmer Auftraggeber

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

 Fremdstoffe (Menge):
 0,0 g

 Fremdstoffe (Art):
 nein

 Siebrückstand > 10mm:
 Ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1500 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II,	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	х	х	Х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	х	Х		Glühverlust	< 5 mm	40 °C	< 150 μm	10 g
1.02	х	Х		TOC	< 5 mm	40 °C	< 150 µm	2 g
2.01	x			BTEX	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	х		Х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	x			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	x	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			Х	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 µm	3 g
3.01 - 3.21	х	×	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	х	х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	x	х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	x	х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	х	Х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

Probennummer 120174433
Probenbeschreibung KB 5/3 (7,8-10,0)

Probenvorbereitung

Probenehmer Auftraggeber

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Art): nein
Siebrückstand > 10mm: Ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1420 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II, III	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	x	X	х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	х	х		Glühverlust	< 5 mm	40 °C	< 150 μm	10 g
1.02	X	x		TOC	< 5 mm	40 °C	< 150 µm	2 g
2.01	×			BTEX	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	X		х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	×			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	×	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			х	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	×	x	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	×	х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	х	х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	x	Х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	X	х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

Anlage 6 Prüfprotokolle der bodenmechanischen Untersuchungen

Laboruntersuchungsbericht (Nr.381/2020)

Vorhaben: 20-0409 Altenstadt a.d. Waldnaab

BG Sauernlohe

Dr. G. Pedall Ingenieurbüro GmbH Auftraggeber:

Untere Dorfstraße 7

95473 Haag

Auftrag vom: 21.12.2020

Kostenträger-Nr.: 30210003

Untersuchungen: Korngrößenverteilung

Probenanzahl: 6

1434-1439 Labor-Nr.:

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme

Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverarbeitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der G.E.O.S. Ingenieurgesellschaft mbH.

Halsbrücke, 07.01.2021

Andreas Köhler

Fachbereich Geotechnik/Bergbau

G.E.O.S.

Ingenieurgesellschaft mbH

09633 Halsbrücke

Schwarze Kiefern 2 09581 Freiberg, Postfach 1162 Telefon: +49(0)3731 369-0 Telefax: +49(0)3731 369-200

E-Mail: info@geosfreiberg.de www.geosfreiberg.de

Datum:

07.01.2021

Unsere Zeichen: 30210003/mb-bh

Thre Zeichen/Ihre Nachricht vo

21.12.2020

Durchwahl: -168

Geschäftsführer: Jan Richter

HRB 1035 Amtsgericht Registergericht Chemnitz

Sparkasse Mittelsachsen DE30 8705 2000 3115 0191 48 SWIFT (BIC): WELADED1FGX

Deutsche Bank AG DE59 8707 0000 0220 1069 00 SWIFT (BIC): DEUTDE8CXXX

USt.-IdNr. DE811132746

Art und Umfang der Untersuchungen

Zur Untersuchung kamen gestörte Bodenproben, an welchen die Korngrößenverteilung ermittelt wurde.

1. Korngrößenverteilung

Die Korngrößenverteilung wurde nach DIN EN ISO 17892-4 durch Siebanalyse und Sedimentationsanalyse (Aräometerverfahren) ermittelt.

Ergebnisse siehe Anlagen 1.1-1.6

Telefon: 03731 / 369 168 Fax: 03731 / 369 200 Prüfungsnr.: 1434 Anlage: 1.1 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1434

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 1/1

Station:

Entnahmetiefe: 0,3-1,8

m rechts der Achse

m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20 du

durch: AG

Siebanalyse:

Einwaage Siebanalyse me: 2924,10 g Abgeschlämmter Anteil ma: 397,90 g %-Anteil der Siebeinwaage me' = 100 - ma' me': 88,02 %-Anteil der Abschlämmung ma' = 100 - me' ma': 11,98

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	39,20	1,18	98,8
4	8,000	109,20	3,29	95,5
5	4,000	269,90	8,12	87,4
6	2,000	398,60	12,00	75,4
7	1,000 *	30,25	14,26	61,2
8	0,500 *	35,37	16,67	44,5
9	0,250 *	38,34	18,07	26,4
10	0,125 *	19,42	9,15	17,3
11	0,063 *	10,78	5,08	12,2
	Schale *	0,08	0,04	12,1

Summe aller Siebrückstände:

Siebverlust:

S = 2918,93 gSV = mt - St = 0,33 g

Größtkorn [mm]: (*) bezogen auf Teilmenge mt [g]:

31,50 134,57

7

SV' = (mt - St) / mt * 100 = 0,25

.5 g .5 %

Summe der Teilmenge : St =

ab dem Sieb Nr.

134,24

	Fraktionsanteil	Prozentanteil
	Ton	3,08
	Schluff	8,97
	Sandkorn	63,35
	Feinsand	10,51
	Mittelsand	26,71
	Grobsand	26,13
	Kieskorn	24,60
	Feinkies	17,34
ì	Mittelkies	6,60
	Grobkies	0,66
I	Steine	0,00

Durchgang [%]	Siebdurchmesser [mm]
10,0	0,031
20,0	0,163
30,0	0,293
40,0	0,425
50,0	0,618
60,0	0,947
70,0	1,520
80,0	2,561
90,0	4,803
100.0	31,500

Bemerkungen:

Telefon: 03731 / 369 168 : 03731 / 369 200 Prüfungsnr.: 1434 Anlage: 1.1 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1434

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 1/1

Station:

m unter GOK

m rechts der Achse

Entnahmetiefe: 0,3-1,8

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20 durch: AG

Aräometer Nr.: 10

> 1.0 g Soda Meniskuskorrektur mit Dispergierungsmittel: Cm = 1,6000

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 25

Trockene Probe + Behälter md + mB

30,59 g

Korndichte ρ_s :

2,650 g/cm3

Behälter mB

0,00

Referenzwert R'0:

-1,600

Trockene Probe md

30,59

Referenzwert R $_0$ = R' $_0$ +Cm:

0,000

mu = md * (ρ_S - 1) / ρ_S = 100% der Lesung

19,05

 $a = 100 / mu * (R + C_{\theta}) =$

5,25 * (R + C $_{\theta}$) % von md

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(p'-1)*10³	Lesung + Meniskuskorr R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Tauch- tiefe H _r [mm]	Korr.Lesung R+C _θ	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	17,20	18,80	0,0756	20,0	153,44	18,80	98,71	12,20
00:02:00	2 m	15,60	17,20	0,0387	20,0	161,17	17,20	90,30	11,16
00:05:00	5 m	12,40	14,00	0,0256	20,0	176,64	14,00	73,50	9,09
00:15:00	15 m	10,00	11,60	0,0153	20,0	188,24	11,60	60,90	7,53
00:45:00	45 m	6,40	8,00	0,0092	20,0	205,65	8,00	42,00	5,19
02:00:00	2 h	5,60	7,20	0,0057	20,0	209,52	7,20	37,80	4,67
06:00:00	6 h	4,00	5,60	0,0033	21,5	217,25	5,60	29,40	3,63
00:00:00	1 d	3,00	4,60	0,0017	20,5	222,08	4,60	24,15	2,99

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200

Prüfungsnr.: 1435 Anlage: 1.2 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1435

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 2/3

Station:

m rechts der Achse m unter GOK

Entnahmetiefe: 7,2-10,0

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20

durch: AG

Siebanalyse:

4216,60 g Einwaage Siebanalyse me; Abgeschlämmter Anteil ma: 540,40 g

88,64 %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' 11,36

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	99,60	2,09	97,9
3	16,000	232,40	4,89	93,0
4	8,000	219,60	4,62	88,4
5	4,000	332,40	6,99	81,4
6	2,000	522,70	10,99	70,4
7	1,000 *	35,27	14,91	55,5
8	0,500	43,87	18,55	37,0
9	0,250 *	32,55	13,76	23,2
10	0,125 *	15,39	6,51	16,7
11	0,063 *	11,84	5,01	11,7
	Schale *	0,60	0,25	11,4

Summe aller Siebrückstände:

Siebverlust:

4212,98 SV = mt - St =0,18 g

Größtkorn [mm]: (*) bezogen auf Teilmenge mt [g]:

63,00 139,70

139,52

SV' = (mt - St) / mt * 100 =0,13

ab dem Sieb Nr. Summe der Teilmenge : St =

Fraktionsanteil	Prozentanteil
Ton	2,61
Schluff	8,91
Sandkorn	58,88
Feinsand	9,09
Mittelsand	21,17
Grobsand	28,63
Kieskorn	29,60
Feinkies	15,55
Mittelkies	8,74
Grobkies	5,31
Steine	0,00

Durchgang [%]	Siebdurchmesser [mm]
10,0	0,033
20,0	0,188
30,0	0,369
40,0	0,561
50,0	0,811
60,0	1,206
70,0	1,957
80,0	3,605
90,0	10,085
100,0	63,000

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200

Prüfungsnr.: 1435 Anlage: 1.2 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1435

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 2/3

Station:

m rechts der Achse Entnahmetiefe: 7,2-10,0 m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20 durch: AG

Nr.: 10 Aräometer

> Meniskuskorrektur mit Dispergierungsmittel: Cm = 1,6000 1.0 g Soda

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 45

Trockene Probe + Behälter md + mB 31,10 Korndichte ρ_S : 2,650 g/cm³ Behälter mB 0,00

Trockene Probe md -1,600 31,10 Referenzwert R'0: 0,000 Referenzwert R₀ = R'₀+Cm: mu = md * (ρ_S - 1)/ ρ_S = 100% der Lesung 19,36

a = 100 / mu * (R + C $_{\theta}$) = 5,16 * (R + C $_{\theta}$) % von md

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Tauch- tiefe H, [mm]	Korr.Lesung	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	16,80	18,40	0,0761	20,0	155,37	18,40	95,02	11,70
00:02:00	2 m	15,00	16,60	0,0391	20,0	164,07	16,60	85,73	10,56
00:05:00	5 m	12,40	14,00	0,0256	20,0	176,64	14,00	72,30	8,90
00:15:00	15 m	9,60	11,20	0,0154	20,0	190,18	11,20	57,84	7,12
00:45:00	45 m	6,80	8,40	0,0092	20,0	203,71	8,40	43,38	5,34
02:00:00	2 h	5,00	6,60	0,0057	20,0	212,42	6,60	34,08	4,20
06:00:00	6 h	3,20	4,80	0,0033	21,5	221,12	4,80	24,79	3,05
00:00:00	1 d	2,40	4,00	0,0017	19,5	224,99	4,00	20,66	2,54

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200 Prüfungsnr.: 1436 Anlage: 1.3 zu: 381/2020

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1436

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 04.01.2020

Bemerkung:

Entnahmestelle: KB 3/1

Station:

m rechts der Achse

Entnahmetiefe: 0,6-6,2

m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20

durch: AG

Siebanalyse:

Einwaage Siebanalyse me:
Abgeschlämmter Anteil ma:

3449,70 g 316,30 g %-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

a' me': 91,60 e' ma': 8,40

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]
1	63,000	0,00	0,00	100,0
2	31,500	0,00	0,00	100,0
3	16,000	116,10	3,08	96,9
4	8,000	227,20	6,03	90,9
5	4,000	380,60	10,11	80,8
6	2,000	478,70	12,71	68,1
7	1,000	* 38,61	16,16	51,9
8	0,500	* 37,92	15,87	36,0
9	0,250	* 36,56	15,30	20,7
10	0,125	* 20,14	8,43	12,3
11	0,063	* 9,16	3,83	8,5
	Schale	* 0,21	0,09	8,4

Summe aller Siebrückstände:

Siebverlust:

S = 3 SV = mt - St =

3449,70 g -0,00 g Größtkorn [mm]: (*) bezogen auf Teilmenge mt [g]:

31,50 142,60 7

SV' = (mt - St) / mt * 100 =

-0,00 g

ab dem Sieb Nr. Summe der Teilmenge : St =

142,60

Fraktionsanteil	Prozentanteil
Ton	
Schluff	8,50
Sandkorn	59,60
Feinsand	8,69
Mittelsand	23,02
Grobsand	27,89
Kieskorn	31,90
Feinkies	19,02
Mittelkies	11,11
Grobkies	1,77
Steine	0,00

Durchgang [%]	Siebdurchmesser [mm]
10,0	0,087
20,0	0,240
30,0	0,388
40,0	0,595
50,0	0,922
60,0	1,402
70,0	2,192
80,0	3,811
90,0	7,427
100,0	31,500

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200 Prüfungsnr.: 1437 Anlage: 1.4 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1437

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 4/3

Station:

m rechts der Achse

Entnahmetiefe: 8,3-10,0

m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20 durch: AG

Siebanalyse:

Einwaage Siebanalyse me: 3824,00 g Abgeschlämmter Anteil ma: 464,00 g %-Anteil der Siebeinwaage me' = 100 - ma' me': 89,18 %-Anteil der Abschlämmung ma' = 100 - me' ma': 10,82

4288,00 g Gesamtgewicht der Probe mt: Rückstand Rückstand Durchgang Siebdurchmesser [mm] [g] [%] [%] 0.00 100,0 63,000 0,00 1 2 277,30 6,47 93.5 31,500 9,73 3 16,000 417,10 83,8 79,2 4 198,10 4,62 8,000 5,89 73,3 5 4,000 252,40 66,6 2,000 289,40 6,75 6 1,000 13,69 52,9 7 34,20 * 8 0,500 43,29 17,33 35,5 ¥ 9 0,250 30,61 12,25 23,3 10 0,125 19,48 7,80 15,5 * 0,063 11,13 4,46 11,0 11 Schale * 0,23 0,09 10,9

Summe aller Siebrückstände:

Siebverlust:

S = 3819,19 gat - St = 0,28 g

SV = mt - St = 0,28 SV' = (mt - St) / mt * 100 = 0,20 9

Größtkorn [mm]: 63,00 (*) bezogen auf Teilmenge mt [g]: 139,22

ab dem Sieb Nr.

Summe der Teilmenge : St = 138,94

ı	Fraktionsanteil	Prozentanteil
	Ton	3,21
	Schluff	7,66
	Sandkorn	55,73
	Feinsand	9,56
	Mittelsand	19,40
	Grobsand	26,77
	Kieskorn	33,40
	Feinkies	10,35
	Mittelkies	9,75
	Grobkies	13,30
	Steine	0,00

Durchgang [%]	Siebdurchmesser [mm]
10,0	0,036
20.0	0,193
30,0	0,381
40,0	0,604
50,0	0,891
60,0	1,367
70,0	2,706
0,08	9,162
90,0	24,811
100,0	63,000

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200 Prüfungsnr.: 1437 Anlage: 1.4 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1437

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 4/3

Station:

m rechts der Achse

Entnahmetiefe: 8,3-10,0 m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20 durch: AG

Aräometer Nr.: 10

Meniskuskorrektur mit Dispergierungsmittel: Cm = 1,6000 1.0 g Soda

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 5

Trockene Probe + Behälter md + mB

30,25

Korndichte ρ_S:

2,650 g/cm³

Behälter mB

0,00 g

Referenzwert R'₀:

-1,600 g/oiii

Trockene Probe md

30,25 g

Referenzwert R $_0$ = R' $_0$ +Cm:

0,000

mu = md * (ρ _S - 1) / ρ _S = 100% der Lesung

18,83

 $a = 100 / mu * (R + C_{\theta}) =$

5,31 * (R + C $_{\theta}$) % von md

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(p'-1)*10³	Lesung + Meniskuskorr R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Tauch- tiefe H _r [mm]	Korr.Lesung R+C _θ	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	15,80	17,40	0,0772	20,0	160,21	17,40	92,38	11,00
00:02:00	2 m	14,60	16,20	0,0393	20,0	166,01	16,20	86,01	10,24
00:05:00	5 m	12,40	14,00	0,0256	20,0	176,64	14,00	74,33	8,85
00:15:00	15 m	10,40	12,00	0,0152	20,0	186,31	12,00	63,71	7,59
00:45:00	45 m	8,00	9,60	0,0090	20,0	197,91	9,60	50,97	6,07
02:00:00	2 h	6,00	7,60	0,0057	20,0	207,58	7,60	40,35	4,80
06:00:00	6 h	4,40	6,00	0,0033	21,5	215,32	6,00	31,86	3,79
00:00:00	1 d	3,20	4,80	0,0017	20,5	221,12	4,80	25,48	3,03

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200

Prüfungsnr.: 1438 Anlage: 1.5 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1438

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 5/1

Station:

m rechts der Achse

Entnahmetiefe: 0,4-5,7

m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20

durch: AG

Siebanalyse:

Einwaage Siebanalyse me: 4070,20 g Abgeschlämmter Anteil ma: 588,80 g

%-Anteil der Siebeinwaage me' = 100 - ma' me'; 87,36 %-Anteil der Abschlämmung ma' = 100 - me' 12,64

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]	
1	63,000	0,00	0,00	100,0	
2	31,500	0,00	0,00	100,0	
3	16,000	63,40	1,36	98,6	
4	8,000	93,20	2,00	96,6	
5	4,000	237,30	5,09	91,5	
6	2,000	393,90	8,45	83,1	
7	1,000 *	23,45	11,94	71,1	
8	0,500 *	30,39	15,48	55,7	
9	0,250 *	41,25	21,01	34,7	
10	0,125 *	29,78	15,17	19,5	
11	0,063 *	13,35	6,80	12,7	
	Schale *	0,07	0,04	12,7	

Summe aller Siebrückstände:

Siebverlust:

4069,49 SV = mt - St =0,03 g

SV' = (mt - St) / mt * 100 = 0,02

Größtkorn [mm]: 31,50 138,32 (*) bezogen auf Teilmenge mt [g]:

ab dem Sieb Nr.

Summe der Teilmenge : St = 138,29

	Fraktionsanteil	Prozentanteii				
	Ton	3,55				
	Schluff	9,00				
ı	Sandkorn	70,55				
Ì	Feinsand	16,31				
	Mittelsand	31,53				
	Grobsand	22,71				
	Kieskorn	16,90				
	Feinkies	11,81				
	Mittelkies	4,22				
	Grobkies	0,87				
	Steine	0,00				

Durchgang [%]	Siebdurchmesser [mm]
10,0	0,026
20,0	0,129
30,0	0,210
40,0	0,299
50,0	0,412
60,0	0,590
70,0	0,944
80,0	1,642
90,0	3,451
100.0	31,500

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200

Prüfungsnr.: 1438 Anlage: 1.5 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1438

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 5/1

Station:

m rechts der Achse m unter GOK

29,10

Entnahmetiefe: 0,4-5,7

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20 durch: AG

Aräometer Nr.: 10

> Meniskuskorrektur mit Dispergierungsmittel: Cm = 1,6000 1.0 g Soda

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Trockene Probe + Behälter md + mB Behälter Nr.: 27

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 0,00 Trockene Probe md Referenzwert R'₀: -1,600 29,10

Referenzwert R $_0$ = R' $_0$ +Cm: 0,000 mu = md * (ρ _S - 1) / ρ _S = 100% der Lesung 18,12

5,52 * (R + C $_{\theta}$) % von md $a = 100 / mu * (R + C_{\theta}) =$

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(p'-1)*10³	Lesung + Meniskuskorr R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Tauch- tiefe H _r [mm]	Korr.Lesung	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	14,80	16,40	0,0784	20,0	165,04	16,40	90,51	12,70
00:02:00	2 m	13,80	15,40	0,0398	20,0	169,87	15,40	84,99	11,93
00:05:00	5 m	11,20	12,80	0,0261	20,0	182,44	12,80	70,64	9,91
00:15:00	15 m	8,40	10,00	0,0156	20,0	195,98	10,00	55,19	7,74
00:45:00	45 m	7,00	8,60	0,0092	20,0	202,75	8,60	47,46	6,66
02:00:00	2 h	5,20	6,80	0,0057	20,0	211,45	6,80	37,53	5,27
06:00:00	6 h	3,40	5,00	0,0033	21,5	220,15	5,00	27,60	3,87
00:00:00	1 d	3,00	4,60	0,0017	19,5	222,08	4,60	25,39	3,56

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200

Prüfungsnr.: 1439 Anlage: 1.6 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1439

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 5/2

Station:

m rechts der Achse

Entnahmetiefe: 5,7-7,8

m unter GOK

Bodenart:

Art der Entnahme: gestört

Entnahme am: 02.-07.12.20

durch: AG

Siebanalyse:

Einwaage Siebanalyse me: 3389,20 g Abgeschlämmter Anteil ma:

SV' = (mt - St) / mt * 100 =

814,80 g

%-Anteil der Siebeinwaage me' = 100 - ma' me': %-Anteil der Abschlämmung ma' = 100 - me' ma':

80,62 19,38

	Siebdurchmesser [mm]	Rückstand [g]	Rückstand [%]	Durchgang [%]	
1	63,000	0,00	0,00	100,0	
2	31,500	331,80	7,89	92,1	
3	16,000	93,00	2,21	89,9	
4	8,000	79,70	1,90	88,0	
5	4,000	99,60	2,37	85,6	
6	2,000	166,30	3,96	81,7	
7	1,000 *	20,99	11,01	70,7	
8	0,500 *	27,81	14,58	56,1	
9	0,250 *	30,60	16,05	40,0	
10	0,125	24,45	12,82	27,2	
11	0,063	14,63	7,67	19,5	
	Schale *	0,27	0,14	19,4	

Siebverlust:

3388,32 g S = 0,04 SV = mt - St =

0,03

(*) bezogen auf Teilmenge mt [g]: ab dem Sieb Nr.

63,00 118,79

Summe der Teilmenge : St =

118,75

J	Fraktionsanteil	Prozentanteil				
	Ton	4,07				
	Schluff	15,18				
	Sandkorn	62,45				
	Feinsand	16,15				
	Mittelsand	24,78				
N	Grobsand	21,51				
	Kieskorn	18,30				
	Feinkies	5,31				
	Mittelkies	3,29				
	Grobkies	9,70				
	Steine	0,00				

Durchgang [%]	Siebdurchmesser [mm]				
10,0	0,012				
20,0	0,068				
30,0	0,149				
40,0	0,250				
50,0	0,386				
60,0	0,595				
70,0	0,965				
80,0	1,733				
90,0	16,912				
100,0	63,000				

Bemerkungen:

Telefon: 03731 / 369 168 Fax: 03731 / 369 200 Prüfungsnr.: 1439 Anlage: 1.6 zu: 381/2020

Bestimmung der Korngrößenverteilung

kombinierte Sieb-/Schlämmanalyse nach DIN EN ISO 17892-4

Prüfungs-Nr.: 1439

Bauvorhaben: 20-0409 Altenstadt s.d. Waldnaab

BG Sauernlohe

Ausgeführt durch: Weißgerber

am: 05.01.2020

Bemerkung:

Entnahmestelle: KB 5/2

Station:

m rechts der Achse m unter GOK

Entnahmetiefe: 5,7-7,8

Bodenart:

Art der Entnahme: gestört Entnahme am: 02.-07.12.20

durch: AG

Aräometer

Nr. : 10

Meniskuskorrektur mit Dispergierungsmittel: Cm = 1,6000 1.0 g Soda

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: 24

Trockene Probe + Behälter md + mB

29,59 g

Korndichte ρ_S:

2,650 g/cm³

Behälter mB

0,00 g

Referenzwert R'₀:

-1,600

Trockene Probe md

29,59 g

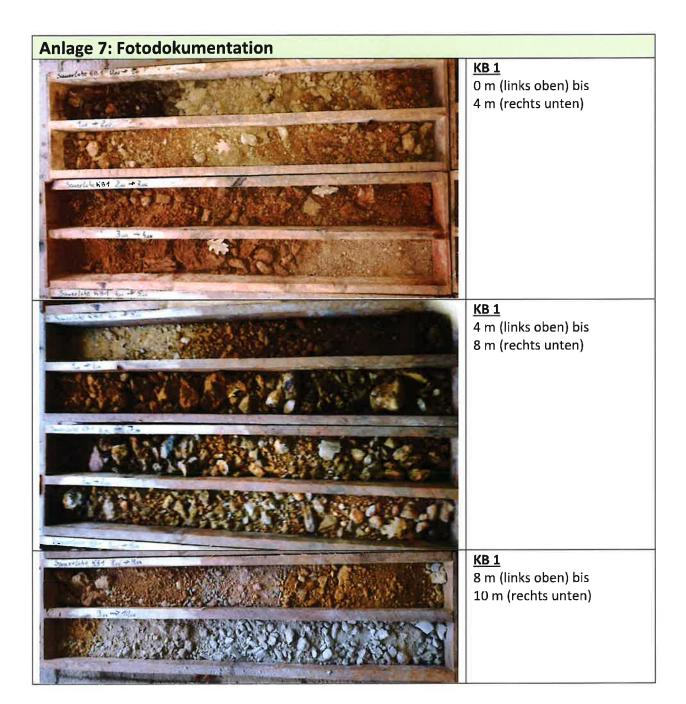
Referenzwert R₀ = R'₀+Cm:

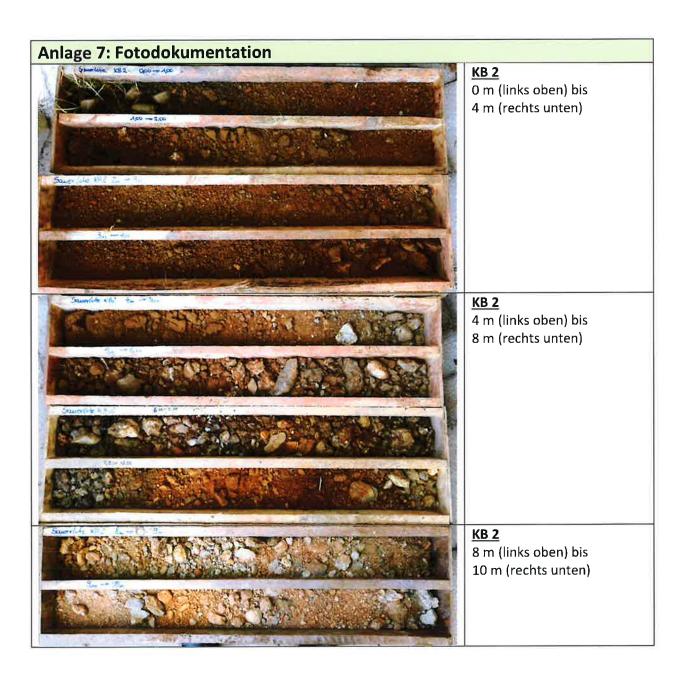
0,000

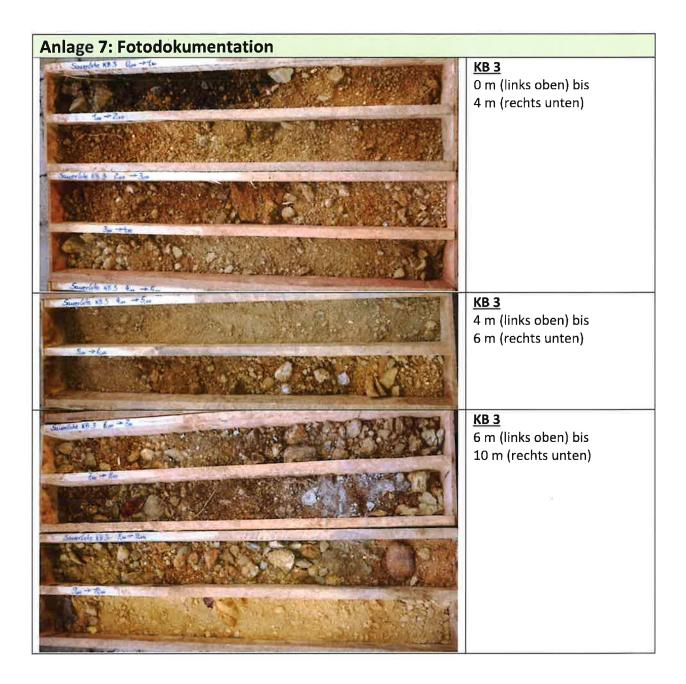
mu = md * (ρ _S - 1) / ρ _S = 100% der Lesung

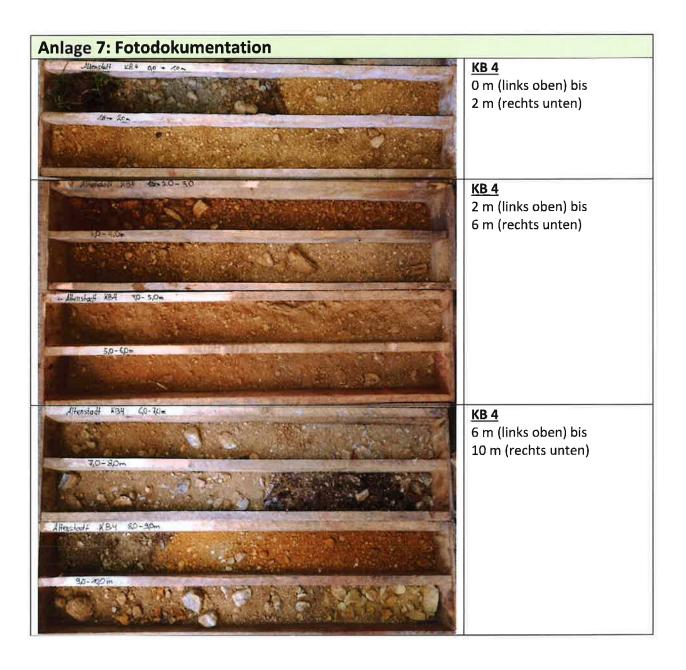
18,42 g

 $a = 100 / mu * (R + C_{\theta}) =$


5,43 * (R + C $_{\theta}$) % von md


Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Tauch- tiefe H _r [mm]	Korr.Lesung R+C _e	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	16,60	18,20	0,0763	20,0	156,34	18,20	98,78	19,50
00:02:00	2 m	15,00	16,60	0,0391	20,0	164,07	16,60	90,10	17,79
00:05:00	5 m	12,40	14,00	0,0256	20,0	176,64	14,00	75,99	15,00
00:15:00	15 m	9,40	11,00	0,0154	20,0	191,15	11,00	59,70	11,79
00:45:00	45 m	6,20	7,80	0,0092	20,0	206,61	7,80	42,34	8,36
02:00:00	2 h	4,60	6,20	0,0058	20,0	214,35	6,20	33,65	6,64
06:00:00	6 h	3,40	5,00	0,0033	21,5	220,15	5,00	27,14	5,36
00:00:00	1 d	1,80	3,40	0,0017	20,5	227,89	3,40	18,45	3,64


Bemerkungen:


Anlage 7


Fotodokumentation Kernbohrungen

